20.甲.乙两人共同抛掷一枚硬币.规定硬币正面朝上甲得1分.否则乙得1分.先积得3分者获胜.并结束游戏. (I)求在前3次抛掷中甲得2分.乙得1分的概率, (II)若甲已经积得2分.乙已经积得1分.求甲最终获胜的概率, 查看更多

 

题目列表(包括答案和解析)

() (本小题满分13分)

在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.

(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;

(Ⅱ)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.

查看答案和解析>>

(本小题满分13分)

在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.

(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;

(Ⅱ)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.

查看答案和解析>>

(本小题满分13分)

如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:

时间(分钟)

10~20

20~30

30~40

40~50

50~60

L1的频率

0.1

0.2

0.3

0.2

0.2

L2的频率

0

0.1

0.4

0.4

0.1

现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。

(Ⅰ)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?

(Ⅱ)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(Ⅰ)的选择方案,求X的分布列和数学期望。

查看答案和解析>>

(本小题满分13分)

在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.

(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;

(Ⅱ)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.

查看答案和解析>>

(本小题满分13分)
在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.
(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;
(Ⅱ)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.

查看答案和解析>>

 

一、选择题:本大题共12小题,每小题5分,共60分。

1―5 DBCDC    6―10BBCAB    11―12 DB

二、填空题:本大题共4小题,每小题4分,共16分。

13.“”   14.    15.1200    16.

三、解答题:本大题共6小题,共80分。解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分13分)

解:(I)由已知

   (II)

∵面ABCD是正方形,∴点F为AC中点,……2分

又∵点E是棱CC1中点,∴EF//AC1  …………4分

又∵EF面EDB,AC1面EDB;

∴AC1⊥平面BDE  ………………5分

   (II)连结B1D、B1E

长方体ABCD―A1B1C1D1中,DC⊥面BB1C1C

所以在三棱锥D―BB1E中,

19.解:(I)由条件得:   …………2分

    ………………4分

   ………………6分

   (II)由(I)得  …………8分

   

20.解:(I)掷一枚硬币三次,列出所有可能情况共8种:

   (上上上),(上上下),(上下上),(上下下),(下上上),(下上下),(下下上),(下下下);

    其中甲得2分、乙得1分的有3种,故所求概率  …………3分

   (II)在题设条件下,至多还要2局,情形一:在第四局,硬币正面朝上,则甲积3分、乙积1分,甲获胜,概率为1/2;情形二:在第四局,硬币正面朝下,第五局硬币正面朝上,则甲积3分、乙积2分,甲获胜,概率为1/4。由加法公式,甲获胜的概率为1/2+1/4=3/4。   ………………8分

21.解:(I)∵F1,F2三等份BD, …………1分

       ………………3分

   (II)由(I)知为BF2的中点,

   

   (III)依题意直线AC的斜率存在,

   

   

   (III)解法二 依题意直线AC的斜率存在,

   

   

   (III)[解法二]同理

20.(I)解:

  

   (II)切线l与曲线有且只有一个公共点等价

的唯一解;  ………………10分

x

(―∞,0)

―1

+

0

0

+

极大值0

极小值

x

―1

+

0

0

+

极大值

极小值0