A. B. C.1 D.0 查看更多

 

题目列表(包括答案和解析)

a
+
b
+
c
=
0
a
b
的夹角为60°,|
b
|=|
a
|=1,求
a
c
的夹角(  )

查看答案和解析>>

a,b,c是区间(0,1)内三个互不相等的实数,且p=logc,q=,r=logc,则p,q,r的大小关系是(    )

A.p<q<r                      B.r<p<q

C.p<r<q                      D.r<q<p

查看答案和解析>>

a,b,c是区间(0,1)内三个互不相等的实数且p=logc,q=,r=logc,则p、q、r的大小关系是(    )

A.p<q<r            Br<p<q             C.p<r<q             D.r<q<p

查看答案和解析>>

已知

=

  (A)        (B)               (C) 1            (D) 0

查看答案和解析>>

a,b,c分别为方程x-2-logx=0,x--1=0,x-()x+2=0的实根,则a,b,c的大小关系是

A.b>c>a             B.a>b>c             C.a>c>b             D.b>a>c

查看答案和解析>>

难点磁场

解:(1)6ec8aac122bd4f6ef(x)=3, 6ec8aac122bd4f6ef(x)=-1,所以6ec8aac122bd4f6ef(x)不存在,所以f(x)在x=-1处不连续,

6ec8aac122bd4f6ef(x)=f(-1)=-1, 6ec8aac122bd4f6ef(x)≠f(-1),所以f(x)在x=-1处右连续,左不连续

6ec8aac122bd4f6ef(x)=3=f(1), 6ec8aac122bd4f6ef(x)不存在,所以6ec8aac122bd4f6ef(x)不存在,所以f(x)在x=1不连续,但左连续,右不连续.

6ec8aac122bd4f6ef(x)=f(0)=0,所以f(x)在x=0处连续.

(2)f(x)中,区间(-∞,-1),[-1,1],(1,5]上的三个函数都是初等函数,因此f(x)除不连续点x=±1外,再也无不连续点,所以f(x)的连续区间是(-∞,-1),[-1,1]和(1,56ec8aac122bd4f6e.

歼灭难点训练

一、1.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:A

2.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

f(x)在x=1点不连续,显知f(x)在(0,1)和(1,2)连续.

答案:C

二、3.解析:利用函数的连续性,即6ec8aac122bd4f6e,

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

三、5.解:f(x)=6ec8aac122bd4f6e

(1) 6ec8aac122bd4f6ef(x)=-1, 6ec8aac122bd4f6ef(x)=1,所以6ec8aac122bd4f6ef(x)不存在,故f(x)在x=0处不连续.

(2)f(x)在(-∞,+∞)上除x=0外,再无间断点,由(1)知f(x)在x=0处右连续,所以f(x)在[

-1,0]上是不连续函数,在[0,1]上是连续函数.

6.解:(1)f(-x)=6ec8aac122bd4f6e

(2)要使f(x)在(-∞,+∞)内处处连续,只要f(x)在x=0连续,6ec8aac122bd4f6ef(x)

= 6ec8aac122bd4f6e6ec8aac122bd4f6e=6ec8aac122bd4f6e

6ec8aac122bd4f6ef(x)=6ec8aac122bd4f6e(a+bx)=a,因为要f(x)在x=0处连续,只要6ec8aac122bd4f6e f(x)= 6ec8aac122bd4f6ef(x)

= 6ec8aac122bd4f6ef(x)=f(0),所以a=6ec8aac122bd4f6e

7.证明:设f(x)=a0x3+a1x2+a2x+a3,函数f(x)在(-∞,+∞)连续,且x→+∞时,f(x)→+∞;x→-∞时,f(x)→-∞,所以必存在a∈(-∞,+∞),b∈(-∞,?+∞),使f(a)?f(b)<0,所以f(x)的图象至少在(a,b)上穿过x轴一次,即f(x)=0至少有一实根.

8.解:不连续点是x=1,连续区间是(-∞,1),(1,+∞)

 

 


同步练习册答案