又由, 所以. 查看更多

 

题目列表(包括答案和解析)

如图所示,在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40
3
海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20
3
海里的位置C.
(1)求该船的行驶速度(单位:海里/小时); 
(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

查看答案和解析>>

如图所示,在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C.

(1)求该船的行驶速度(单位:海里/小时);

(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

查看答案和解析>>

如图所示,在一个特定时段内,以点E为中心的10海里以内海域被设为警戒水域.点E正北40海里处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东30°且与点A相距100海里的位置B,经过2小时又测得该船已行驶到点A北偏东60°且与点A相距20海里的位置C.
(1)求该船的行驶速度(单位:海里/小时); 
(2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

称满足以下两个条件的有穷数列阶“期待数列”:

;②.

(1)若等比数列阶“期待数列”,求公比q及的通项公式;

(2)若一个等差数列既是阶“期待数列”又是递增数列,求该数列的通项公式;

(3)记n阶“期待数列”的前k项和为

(i)求证:

(ii)若存在使,试问数列能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

 

查看答案和解析>>


同步练习册答案