所以.cos60°=. 查看更多

 

题目列表(包括答案和解析)

对于不等式<n+1(n∈N*),某同学用数学归纳法的证明过程如下:

(1)当n=1时,<1+1,不等式成立.

(2)假设当nk(k∈N*k≥1)时,不等式成立,即<k+1,则当nk+1时,<=(k+1)+1,

所以当nk+1时,不等式成立,则上述证法                    (  ).

A.过程全部正确

B.n=1验得不正确

C.归纳假设不正确

D.从nknk+1的推理不正确

查看答案和解析>>

“因为指数函数yax是增函数(大前提),而yx是指数函数(小前提),所以函数yx是增函数(结论)”,上面推理的错误在于(  ).

A.大前提错误导致结论错

B.小前提错误导致结论错

C.推理形式错误导致结论错

D.大前提和小前提错误导致结论错

查看答案和解析>>

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

“因为指数函数yax是增函数(大前提),而yx是指数函数(小前提),所以函数yx是增函数(结论)”,上面推理的错误在于(  ).

A.大前提错误导致结论错

B.小前提错误导致结论错

C.推理形式错误导致结论错

D.大前提和小前提错误导致结论错

查看答案和解析>>

“因为指数函数y=ax是增函数,而y=是指数函数,所以y=是增函数”,上面推理的错误是(  )

A.大前提错导致结论错;    B.小前提错导致结论错;

C.推理形式错导致结论错;    D.大前提和小前提错都导致结论错。

 

查看答案和解析>>


同步练习册答案