题目列表(包括答案和解析)
对于不等式
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
<1+1,不等式成立.
(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即
<k+1,则当n=k+1时,
=
<
=
=(k+1)+1,
所以当n=k+1时,不等式成立,则上述证法 ( ).
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
“因为指数函数y=ax是增函数(大前提),而y=
x是指数函数(小前提),所以函数y=
x是增函数(结论)”,上面推理的错误在于( ).
A.大前提错误导致结论错
B.小前提错误导致结论错
C.推理形式错误导致结论错
D.大前提和小前提错误导致结论错
如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且EF=,则下列结论中错误的是 ( )
![]()
A.AC⊥BE B.EF∥平面ABCD
C.三棱锥A-BEF的体积为定值 D.△AEF的面积与△BEF的面积相等
如图所示,圆柱的高为2,底面半径为
,AE、DF是圆柱的两条母线,过
作圆柱的截面交下底面于
.![]()
(1)求证:
;
(2)若四边形ABCD是正方形,求证
;
(3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。
![]()
【解析】第一问中,利用由圆柱的性质知:AD平行平面BCFE
又过
作圆柱的截面交下底面于
.
∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF
AD∥EF
第二问中,由线面垂直得到线线垂直。四边形ABCD是正方形![]()
又![]()
BC、AE是平面ABE内两条相交直线
![]()
![]()
第三问中,设正方形ABCD的边长为x,则在![]()
在![]()
由(2)可知:
为二面角A-BC-E的平面角,所以![]()
证明:(1)由圆柱的性质知:AD平行平面BCFE
又过
作圆柱的截面交下底面于
.
∥
又AE、DF是圆柱的两条母线
∥DF,且AE=DF
AD∥EF![]()
(2)
四边形ABCD是正方形![]()
又![]()
BC、AE是平面ABE内两条相交直线
![]()
![]()
(3)设正方形ABCD的边长为x,则在![]()
在![]()
由(2)可知:
为二面角A-BC-E的平面角,所以![]()
已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.
(1)求f(x)的解析式;
(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.
【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依题意![]()
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)设切点为(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)
又切线过点A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
则g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.
∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2
画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,
所以m的取值范围是(-6,2).
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com