题目列表(包括答案和解析)
第十部分 磁场
第一讲 基本知识介绍
《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。
一、磁场与安培力
1、磁场
a、永磁体、电流磁场→磁现象的电本质
b、磁感强度、磁通量
c、稳恒电流的磁场
*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d
= k
,(d
表示导体元段的方向沿电流的方向、
为导体元段到考查点的方向矢量);或用大小关系式dB = k
结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。
毕萨定律应用在“无限长”直导线的结论:B = 2k
;
*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI
;
*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。
2、安培力
a、对直导体,矢量式为
= I
;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。
b、弯曲导体的安培力
⑴整体合力
折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。
证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为
F = ![]()
= BI![]()
= BI![]()
关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。
证毕。
由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)
⑵导体的内张力
弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。
c、匀强磁场对线圈的转矩
如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为
M = BIS
几种情形的讨论——
⑴增加匝数至N ,则 M = NBIS ;
⑵转轴平移,结论不变(证明从略);
⑶线圈形状改变,结论不变(证明从略);
![]()
*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;
证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…
⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。
证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…
说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。
二、洛仑兹力
1、概念与规律
a、
= q
,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为
与
的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。
b、能量性质
由于
总垂直
与
确定的平面,故
总垂直
,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。
问题:安培力可以做功,为什么洛仑兹力不能做功?
解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。
![]()
很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)
☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?
若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。
2、仅受洛仑兹力的带电粒子运动
a、
⊥
时,匀速圆周运动,半径r =
,周期T = ![]()
b、
与
成一般夹角θ时,做等螺距螺旋运动,半径r =
,螺距d = ![]()
这个结论的证明一般是将
分解…(过程从略)。
☆但也有一个问题,如果将
分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?
其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)
3、磁聚焦
a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。
b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。
4、回旋加速器
a、结构&原理(注意加速时间应忽略)
b、磁场与交变电场频率的关系
因回旋周期T和交变电场周期T′必相等,故
=![]()
c、最大速度 vmax =
= 2πRf
5、质谱仪
速度选择器&粒子圆周运动,和高考要求相同。
第二讲 典型例题解析
一、磁场与安培力的计算
【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。解题过程从略。
【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ →
1. BCD 2. BC 3.D 4.A 5. C
6. AD 7.C 8. CD 9. AB 10.BC
11.(1)CD(2)指零 指零 指零 左偏
12. 电极A与导电纸接触不良
13. 解:(1)小球速度最大时,棒对它的弹力垂直于棒向下,受力分析如图,沿杆方向,
,垂直杆方向:
,
联立以上各式,得电磁学中的“场”.files/image248.gif)
所以:电磁学中的“场”.files/image250.gif)
(2)小球C从斜置的绝缘棒上由静止开始运动,必须满足条件
,而
即
,所以电磁学中的“场”.files/image258.gif)
14. 解:(1)根据牛顿第二定律
,根据库仑定律
,
,解得电磁学中的“场”.files/image266.gif)
(2)当A球受到的合力为零即加速度为零时,动能最大,设此时A球与B点间的距离为R,则
,解得
。
15. 解:(1)、(2)如图所示,设小球在C点的速度大小是
,对轨道的压力大小为
,则对于小球由A
C的过程中,应用动能定理列出:
-0,在C点的园轨道径向应用牛顿第二定律,有
,解得电磁学中的“场”.files/image282.gif)
(3)如图所示,设小球初始位置应在离B点xm的
点,对小球由电磁学中的“场”.files/image284.gif)
D的过程应用动能定理,有:
,在D点的圆轨道径向应用牛顿第二定律,有
,解得电磁学中的“场”.files/image291.gif)
16. 解:(1)F1为P1参与的运动而受到指向N端的洛伦兹力,其值为:
(其中
,为
的电量),
对应有指向N端的加速度:
(其中m为
的质量)
在管中运动会使它受到另一个向左的洛伦兹力,此力与管壁对
向右的力所抵消,
到达N端时具有沿管长方向的速度:电磁学中的“场”.files/image302.gif)
所以,
对纸平面的速度大小为: 电磁学中的“场”.files/image304.gif)
又因为
,故:电磁学中的“场”.files/image308.gif)
即:电磁学中的“场”.files/image310.gif)
所以
的比荷为:电磁学中的“场”.files/image312.gif)
(2)
从M端到N端经历的时间为:电磁学中的“场”.files/image314.gif)
离开管后将在纸平面上做匀速圆周运动,半径与周期分别为:电磁学中的“场”.files/image316.gif)
电磁学中的“场”.files/image318.gif)
经t1时间已随管朝正右方向运动:电磁学中的“场”.files/image320.gif)
的距离
所以
离开N端的位置恰好为
的初始位置
经时间t1已知运动到如图所示的位置S2走过的路程为电磁学中的“场”.files/image325.gif)
只能与
相碰在图中的S处,相遇时刻必为
电磁学中的“场”.files/image327.gif)
且要求
在这段时间内恰好走过2R的路程,因此有
电磁学中的“场”.files/image329.gif)
即得:电磁学中的“场”.files/image331.gif)
所以:电磁学中的“场”.files/image333.gif)
17. 解:
……① 电磁学中的“场”.files/image337.gif)
由于重力和电场力平衡,电粒子在洛伦兹力作用下做圆周运动,小球平抛且碰时动量守恒,根据条件,碰后
反向
……①
另有
……②
解得
……③
对平抛:电磁学中的“场”.files/image347.gif)
解得电磁学中的“场”.files/image349.gif)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com