如图2所示.一带电粒子以水平初速度()先后进入方向垂直的匀强电场和匀强磁场区域.已知电场方向竖直向宽度相同且紧邻在一起.在带电粒子穿过电场和磁场的过程中.电场和磁场对粒子所做的总功为,若把电场和磁场正交重叠.如图3所示.粒子仍以初速度穿过重叠场区.在带电粒子穿过电场和磁场的过程中.电场和磁场对粒子所做的总功为.比较和.有( ) 查看更多

 

题目列表(包括答案和解析)

 如图2所示,一带电粒子以水平初速度)先后进入方向垂直的匀强电场和匀强磁场区域,已知电场方向竖直向宽度相同且紧邻在一起,在带电粒子穿过电场和磁场的过程中(其所受重力忽略不计),电场和磁场对粒子所做的总功为;若把电场和磁场正交重叠,如图3所示,粒子仍以初速度穿过重叠场区,在带电粒子穿过电场和磁场的过程中,电场和磁场对粒子所做的总功为,比较,有(   )

A.一定是         B.一定是

C.一定是          D.可能是,也可能是

 

查看答案和解析>>

 如图2所示,一带电粒子以水平初速度)先后进入方向垂直的匀强电场和匀强磁场区域,已知电场方向竖直向宽度相同且紧邻在一起,在带电粒子穿过电场和磁场的过程中(其所受重力忽略不计),电场和磁场对粒子所做的总功为;若把电场和磁场正交重叠,如图3所示,粒子仍以初速度穿过重叠场区,在带电粒子穿过电场和磁场的过程中,电场和磁场对粒子所做的总功为,比较,有(   )

A.一定是          B.一定是

C.一定是           D.可能是,也可能是

 

查看答案和解析>>

如图1所示,一带电粒子以水平速度v0(v0<E/B)先后进入方向互相垂直的匀强电场和匀强磁场区域,已知电场方向竖直向下,两个区域的宽度相同且紧邻在一起,在带电粒子穿过电场和磁场的过程中,(其所受重力忽略不计),电场和磁场对粒子所做的功为W1;若把电场和磁场正交重叠,如图2所示,粒子仍以初速度v0穿过重叠场区,在带电粒子穿过电场和磁场的过程中,电场和磁场对粒子所做的总功为W2,比较W1和W2,则

A.一定是W1>W2

B.一定是W1=W2

C.一定是W1<W2

D.可能是W1<W2,也可能是W1>W2

查看答案和解析>>

如图所示,一带电粒子的质量为m,带电量为+q,以初速度v0从A点垂直射入匀强电场,过一段时间后,粒子到达B点,速度变为水平方向的2 v0,试求:(1)UAB; (2)匀强电场的电场强度E。

查看答案和解析>>

精英家教网如图甲所示,一个半径r=10cm圆盘由两种材料Ⅰ、Ⅱ构成,每种材料正好形成一个半圆,它们之间除圆心O以外由绝缘薄膜隔开.圆盘下端浸没在导电液体中,O点到液面的距离是半径r的
2
2
倍.圆盘可绕O点按顺时针方向转动,且在转动过程中,只要材料进入液体中,材料Ⅰ在O点与液体间的电阻恒为R=1kΩ,材料Ⅱ在O点与液体间的电阻恒为R=4kΩ.圆盘通过转轴、导电液体与外电路连接,导线与导电液体电阻不计.电路中电源电动势E=2000V,内阻不计,R=4kΩ.R的两端与两块竖直放置、正对且等大的平行金属板相连,板间距离不计.金属板右侧依次有半径为r/10的圆形匀强磁场区域及竖直放置的荧光屏,已知平行金属板正中央的小孔O1、O2,匀强磁场的圆心O3,荧光屏的中心O4在同一条水平直线上,O3O4=20cm.现有一细束带电粒子从O1点沿O1O2方向进入平行金属板间,初速度及重力不计,比荷
q
m
=
2
3
×107C/kg
.匀强磁场的磁感应强度B=1.0T,圆盘的转动周期T=4s.
(1)圆盘处于图示位置时,两平行金属板间的电压是多少?带电粒子打到荧光屏上时距O4点的距离y是多大?
(2)如果圆盘在图位置时为零时刻,在图乙画出平行金属板间电压在一个周期内随时间变化的图象.(可不写计算过程,但需在图上标出具体数值)
(3)在图丙中定性画出电子到达屏上时,它离O4点的距离y随时间的变化图线.

查看答案和解析>>

1. BCD   2. BC    3.D        4.A     5. C

6. AD    7.C     8. CD        9. AB    10.BC

11.(1)CD(2)指零  指零  指零   左偏 

12. 电极A与导电纸接触不良

13. 解:(1)小球速度最大时,棒对它的弹力垂直于棒向下,受力分析如图,沿杆方向,,垂直杆方向:联立以上各式,得

所以:

(2)小球C从斜置的绝缘棒上由静止开始运动,必须满足条件,而,所以

14. 解:(1)根据牛顿第二定律,根据库仑定律,解得

(2)当A球受到的合力为零即加速度为零时,动能最大,设此时A球与B点间的距离为R,则,解得

15. 解:(1)、(2)如图所示,设小球在C点的速度大小是,对轨道的压力大小为,则对于小球由AC的过程中,应用动能定理列出:-0,在C点的园轨道径向应用牛顿第二定律,有,解得

(3)如图所示,设小球初始位置应在离B点xm的点,对小球由D的过程应用动能定理,有:,在D点的圆轨道径向应用牛顿第二定律,有,解得

16. 解:(1)F1为P1参与的运动而受到指向N端的洛伦兹力,其值为:(其中 ,为的电量),对应有指向N端的加速度: (其中m为的质量)

在管中运动会使它受到另一个向左的洛伦兹力,此力与管壁对向右的力所抵消,到达N端时具有沿管长方向的速度:

所以,对纸平面的速度大小为:

又因为,故:

即:

所以的比荷为:

(2)从M端到N端经历的时间为:

离开管后将在纸平面上做匀速圆周运动,半径与周期分别为:

经t时间已随管朝正右方向运动:

的距离

所以离开N端的位置恰好为的初始位置

经时间t已知运动到如图所示的位置S走过的路程为

只能与相碰在图中的S处,相遇时刻必为

且要求在这段时间内恰好走过2R的路程,因此有

即得:

所以:

17. 解:……① 

由于重力和电场力平衡,电粒子在洛伦兹力作用下做圆周运动,小球平抛且碰时动量守恒,根据条件,碰后反向

……①

另有……②

解得……③

对平抛:

解得

 

 

 

 


同步练习册答案