如图所示.将平面直角坐标系中的纵轴绕点O顺时针旋转300构成一个斜坐标系xOy.平面上任一点P关于斜坐标系的坐标(x,y)用如下方式定义:过P作两坐标轴的平行线分别交坐标轴Ox于点M.Oy于点N.则M在Ox轴上表示的数为x.N在Oy轴上表示的数为y.在斜坐标系中.若A.B两点的坐标分别为(1.2)..则线段AB的长为 . 查看更多

 

题目列表(包括答案和解析)

如图所示,将平面直角坐标系中的纵轴绕点O顺时针旋转300(坐标轴的长度单位不变)构成一个斜坐标系xOy,平面上任一点P关于斜坐标系的坐标(x,y)用如下方式定义:过P作两坐标轴的平行线分别交坐标轴Ox于点M,Oy于点N,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.在斜坐标系中,若A,B两点的坐标分别为(1,2),(-2,3),则线段AB的长为
7
7

查看答案和解析>>

如图所示,将平面直角坐标系中的纵轴绕点O顺时针旋转30°(坐标轴的长度单位不变)构成一个斜坐标系xOy,平面上任一点P关于斜坐标系的坐标(x,y)用如下方式定义:过P作两坐标轴的平行线分别交坐标轴Ox于点M,Oy于点N,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.在斜坐标系中,若A,B两点的坐标分别为(1,2),(-2,3),则线段AB的长为_____________.

查看答案和解析>>

如图所示,将平面直角坐标系中的纵轴绕点O顺时针旋转30°(坐标轴的长度单位不变)构成一个斜坐标系xOy,平面上任一点P关于斜坐标系的坐标(x,y)用如下方式定义:过P作两坐标轴的平行线分别交坐标轴Ox于点M,Oy于点N,则M在Ox轴上表示的数为x,N在Oy轴上表示的数为y.在斜坐标系中,若A,B两点的坐标分别为(1,2),(-2,3),则线段AB的长为_____________.

查看答案和解析>>

精英家教网在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图所示).将矩形折叠,使A点落在线段DC上.
(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程;
(Ⅱ)求折痕的长的最大值.

查看答案和解析>>

在平面直角坐标系中,矩形纸片ABCD的长为4,宽为2.AB,AD边分别在x轴、y轴的正半轴上,点A与坐标原点重合.将矩形纸片沿直线折叠,使点A落在边CD上,记为点A',如图所示.
(1)设A'的坐标是(2a,2)(0≤a≤2),写出折痕所在直线的方程;
(2)若折痕经过B时,求折痕所在直线的斜率,并写出以折痕为直径的圆方程.

查看答案和解析>>

一、填空题:本大题共14小题,每小题5分,共70分.

1.   2.   3.   4.   5.1   6.  7.  8. 9.16   10.8   11.  12.   13.  14. ①③

二、解答题:本大题共6小题,共90分.

15.(1)设集合中的点为事件,  区域的面积为36,  区域的面积为18

(2)设点在集合为事件,  甲、乙两人各掷一次骰子所得的点数为36个,其中在集合中的点有21个,故

16.(1)由4sinB ? sin2+ cos2B = 1 +得:

,          

(2)法1:为锐角          

由已知得:, 角为锐角      可得:

由正弦定理得:

法2:由得:,  由余弦定理知:

即:          

17.(1)证明:连接,取中点,连接

在等腰梯形中,,AB=AD,,E是BC的中点

都是等边三角形   

平面    平面

平面   

(2)证明:连接于点,连接

,且    四边形是平行四边形   是线段的中点

是线段的中点     

平面   平面

(3)与平面不垂直.

证明:假设平面,  则

平面  

平面    平面   

,这与矛盾

与平面不垂直.

18.(1)设椭圆的标准方程为

依题意得:,得   ∴  所以,椭圆的标准方程为

(2)设过点的直线方程为:,代入椭圆方程得;

  (*)

依题意得:,即 

得:,且方程的根为  

当点位于轴上方时,过点垂直的直线与轴交于点

直线的方程是:,  

所求圆即为以线段DE为直径的圆,故方程为:

同理可得:当点位于轴下方时,圆的方程为:

(3)设=得:,代入

(**)    要证=,即证

由方程组(**)可知方程组(1)成立,(2)显然成立.∴=

19..解(1)的解集有且只有一个元素,

当a=4时,函数上递减

故存在,使得不等式成立

当a=0时,函数上递增

故不存在,使得不等式成立

综上,得a=4,…………………………5分

(2)由(1)可知

当n=1时,

时,

(3)

+

               =+>

               >    

20解:(1)由的定义可知,(对所有实数)等价于

(对所有实数)这又等价于,即

对所有实数均成立.        (*)

  由于的最大值为

  故(*)等价于,即,这就是所求的充分必要条件

(2)分两种情形讨论

     (i)当时,由(1)知(对所有实数

则由易知

再由的单调性可知,

函数在区间上的单调增区间的长度

(参见示意图1)

(ii)时,不妨设,则,于是

   当时,有,从而

时,有

从而  ;

时,,及,由方程

      解得图象交点的横坐标为

                          ⑴

 

显然

这表明之间。由⑴易知

 

综上可知,在区间上,   (参见示意图2)

故由函数的单调性可知,在区间上的单调增区间的长度之和为,由于,即,得

          ⑵

故由⑴、⑵得 

综合(i)(ii)可知,在区间上的单调增区间的长度和为

 

 

 

 

                                    

 


同步练习册答案