点.且<0.>0. 查看更多

 

题目列表(包括答案和解析)

若定义在R上的函数f(x)满足,且<0,a="f" (),b="f" (),c="f" (),则a,b,c的大小关系为

A.a>b>c            B.c>b>a            C.b>a>c            D.c>a>b

 

查看答案和解析>>

已知幂函数 (p,q∈N+且p与q互质)的图象如图所示,则       (   )

    A.p、q均为奇数且<0    

    B.p为奇数,q为偶数且<0

    C.p为奇数,q为偶数且>0 

    D.p为偶数,q为奇数且<0

查看答案和解析>>

是定义在R上以2为周期的偶函数,已知,则函数在(1,2)上                       

A.是增函数,且<0                               B.是增函数,且>0

C.是减函数,且<0                               D.是减函数,且>0

查看答案和解析>>

二次不等式ax+bx+c<0的解集是R的条件是

A.a>0且△>0   B。a<0且△>0  C。a>0且△<0  D。a<0且△<0

查看答案和解析>>

函数上是增函数,在上是减函数,则       (    )

A.b>0且<0       B.b=2<0      C.b=2>0      D.,b的符号不定

查看答案和解析>>

一、选择题:

CADDB  ADBBA  CD

二、填空题

(13);  (14)8;   (15);  (16).

三、解答题

(17)解:将圆C的方程配方得标准方程为

则此圆的圆心为(0 , 4),半径为2.

(Ⅰ) 若直线与圆C相切,则有. 解得.  ………………6分

(Ⅱ) 解:过圆心C作CD⊥AB,则根据题意和圆的性质,得

 解得.

∴直线的方程是.  ………………12分

(18)解:(Ⅰ)由题意知此平面区域表示的是以构成的三角形及其内部,且△是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),半径是,

所以圆的方程是.    ………………6分

 (Ⅱ)设直线的方程是:.

  因为,所以圆心到直线的距离是, 即.

解得:.                          ………………………………11分

所以直线的方程是. ………………12分

(19)解:设过点T(3,0)的直线交抛物线于点A、B .

(Ⅰ)当直线的钭率不存在时,直线的方程为,

此时, 直线与抛物线相交于点A(3,)().B(3,-),∴=3.   …….............4分

(Ⅱ)当直线的钭率存在时,设直线的方程为

其中,由.     …………………….….6分

又 ∵ , ∴

                                                    ………………………………….10分

综上所述,命题“若直线过点T(3,0),则=3” 是真命题.  ………………….12分

(20)解:(Ⅰ)由的中点,

设A、B两点的坐标分别为

.

点的坐标为.               …………………………4分

  又点在直线上,  .

,       ………………6分

   (Ⅱ)由(Ⅰ)知,不妨设椭圆的一个焦点坐标为

关于直线上的对称点为

则有.         ………………10分

由已知.

,∴所求的椭圆的方程为 .     ………………12分

(21)解:(Ⅰ)

     ,即

     ,即.

      .             ……………………………………………4分

   (Ⅱ)设直线的方程为

      直线与双曲线交于,不妨设

      直线与双曲线交于.

     由.

     令,此式恒成立.

.      ………………6分

       而=.

∴直线与双曲线交于两支上的两点;

同理直线与双曲线交于两支上的两点, 

       则                  ……………………8分

        =

       = .  ……………………10分

       令  则   在(1,2)递增.

       又,  

.             ………………………………………12分

(22)解:(Ⅰ)直线的法向量的方程:

即为. ………………………2分

直线的法向量的方程为

即为.     ………………………4分

(Ⅱ).   ………………………6分

设点的坐标为,由,得.…………8分

由椭圆的定义的知,存在两个定点使得恒为定值4,此时两个定点为椭圆的两个焦点. ………………………10分

(Ⅲ)设,则

,得. ………………………12分

当且仅当时,取最小值.

,故平行.

………………………14分

 

 


同步练习册答案