题目列表(包括答案和解析)
| 1 |
| a-b |
| 1 |
| b-c |
| 4 |
| a-c |
| 1 |
| a-b |
| 1 |
| b-c |
| 1 |
| a-b |
| 1 |
| b-c |
| b-c |
| a-b |
| a-b |
| b-c |
| b-c |
| a-b |
| a-b |
| b-c |
|
| b-c |
| a-b |
| a-b |
| b-c |
| 1 |
| a-b |
| 1 |
| b-c |
| 1 |
| a-b |
| 1 |
| b-c |
| 4 |
| a-c |
| 1 |
| a-b |
| 1 |
| b-c |
| 1 |
| c-d |
| 9 |
| a-d |
| 1 |
| a-b |
| 1 |
| b-c |
| 1 |
| c-d |
| 1 |
| d-e |
| m |
| a-e |
如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB
(Ⅰ)证明:平面EDC⊥平面SBC.(Ⅱ)求二面角A—DE—C的大小 .
![]()
【解析】本试题主要考查了立体几何中的运用。
(1)证明:因为SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的三等分点,SE=2EB 所以ED⊥BS,DE⊥EC,所以ED⊥平面SBC.,因此可知得到平面EDC⊥平面SBC.
(Ⅱ)由SA2= SD2+AD2 = 5 ,AB=1,SE=2EB,AB⊥SA,知
AE2= (1 /3 SA)2+(2/ 3 AB)2 =1,又AD=1.
故△ADE为等腰三角形.
取ED中点F,连接AF,则AF⊥DE,AF2= AD2-DF2 =
.
连接FG,则FG∥EC,FG⊥DE.
所以,∠AFG是二面角A-DE-C的平面角.
连接AG,AG= 2 ,FG2= DG2-DF2
=
,
cos∠AFG=(AF2+FG2-AG2 )/2⋅AF⋅FG =-1 /2 ,
所以,二面角A-DE-C的大小为120°
解析 “指数函数y=ax是增函数”是本推理的大前提,它是错误的,因为实数a的取值范围没有确定,所以导致结论是错误的.
答案 A
关于函数
,有下列命题:
①其图像关于
轴对称;
②当
时,
是增函数,当
时,
是减函数;
③
的最小值是
;
④
在区间(-1,0),(2,
)上是增函数;
⑤
无最大值,也无最小值。
其中所以正确结论的序号是 .
用数学归纳法证明等式对所以n∈N*均成立.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com