题目列表(包括答案和解析)
已知函数
.
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,若对任意
,
,不等式
恒成立,求实数
的取值范围.
【解析】第一问利用
的定义域是
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是![]()
第二问中,若对任意
不等式
恒成立,问题等价于
只需研究最值即可。
解: (I)
的定义域是
......1分
............. 2分
由x>0及
得1<x<3;由x>0及
得0<x<1或x>3,
故函数
的单调递增区间是(1,3);单调递减区间是
........4分
(II)若对任意
不等式
恒成立,
问题等价于
,
.........5分
由(I)可知,在
上,x=1是函数极小值点,这个极小值是唯一的极值点,
故也是最小值点,所以
; ............6分
![]()
当b<1时,
;
当
时,
;
当b>2时,
;
............8分
问题等价于![]()
........11分
解得b<1 或
或
即
,所以实数b的取值范围是
已知函数
,
.
(Ⅰ)若函数
依次在
处取到极值.求
的取值范围;
(Ⅱ)若存在实数
,使对任意的
,不等式
恒成立.求正整数
的最大值.
【解析】第一问中利用导数在在
处取到极值点可知导数为零可以解得方程有三个不同的实数根来分析求解。
第二问中,利用存在实数
,使对任意的
,不等式
恒成立转化为
,恒成立,分离参数法求解得到范围。
解:(1)
①
![]()
(2)不等式
,即
,即
.
转化为存在实数
,使对任意的
,不等式
恒成立.
即不等式
在
上恒成立.
即不等式
在
上恒成立.
设
,则.![]()
设
,则
,因为
,有
.
故
在区间
上是减函数。又![]()
故存在
,使得
.
当
时,有
,当
时,有
.
从而
在区间
上递增,在区间
上递减.
又
[来源:]
![]()
所以当
时,恒有
;当
时,恒有![]()
;
故使命题成立的正整数m的最大值为5
(本小题满分14分)
设函数
定义在
上,
,导函数![]()
(Ⅰ)求
的单调区间的最小值;(Ⅱ)讨论
与
的大小关系;(Ⅲ)是否存在
,使得
对任意
成立?若存在,求出
的取值范围;若不存在请说明理由。
已知函数
,
.
(Ⅰ)若函数
和函数
在区间
上均为增函数,求实数
的取值范围;
(Ⅱ)若方程
有唯一解,求实数
的值.
【解析】第一问,
当0<x<2时,
,当x>2时,
,
要使
在(a,a+1)上递增,必须![]()
![]()
如使
在(a,a+1)上递增,必须
,即![]()
由上得出,当
时
,
在
上均为增函数
(Ⅱ)中方程
有唯一解
有唯一解
设
(x>0)
随x变化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
极小值 |
|
由于在
上,
只有一个极小值,![]()
的最小值为-24-16ln2,
当m=-24-16ln2时,方程
有唯一解得到结论。
(Ⅰ)解:
当0<x<2时,
,当x>2时,
,
要使
在(a,a+1)上递增,必须![]()
![]()
如使
在(a,a+1)上递增,必须
,即![]()
由上得出,当
时
,
在
上均为增函数 ……………6分
(Ⅱ)方程
有唯一解
有唯一解
设
(x>0)
随x变化如下表
|
x |
|
|
|
|
|
- |
|
+ |
|
|
|
极小值 |
|
由于在
上,
只有一个极小值,![]()
的最小值为-24-16ln2,
当m=-24-16ln2时,方程
有唯一解
(本题满分14分)
已知函数
。
(1)求
的最大值及取得最大值时的
的值;
(2)求
在
上的单调增区间。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com