题目列表(包括答案和解析)
| 16 | 27 |
已知
,且
,
,
,
三数大小关系为 ( )
![]()
已知
,且
,
,
,
三数大小关系为 ( )
![]()
已知函数
的图象过坐标原点O,且在点
处的切线的斜率是
.
(Ⅰ)求实数
的值;
(Ⅱ)求
在区间
上的最大值;
(Ⅲ)对任意给定的正实数
,曲线
上是否存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上?说明理由.
【解析】第一问当
时,
,则
。
依题意得:
,即
解得
第二问当
时,
,令
得
,结合导数和函数之间的关系得到单调性的判定,得到极值和最值
第三问假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
(Ⅰ)当
时,
,则
。
依题意得:
,即
解得![]()
(Ⅱ)由(Ⅰ)知,![]()
①当
时,
,令
得![]()
当
变化时,
的变化情况如下表:
|
|
|
0 |
|
|
|
|
|
— |
0 |
+ |
0 |
— |
|
|
|
极小值 |
单调递增 |
极大值 |
|
又
,
,
。∴
在
上的最大值为2.
②当
时,
.当
时,
,
最大值为0;
当
时,
在
上单调递增。∴
在
最大值为
。
综上,当
时,即
时,
在区间
上的最大值为2;
当
时,即
时,
在区间
上的最大值为
。
(Ⅲ)假设曲线
上存在两点P、Q满足题设要求,则点P、Q只能在
轴两侧。
不妨设
,则
,显然![]()
∵
是以O为直角顶点的直角三角形,∴![]()
即
(*)若方程(*)有解,存在满足题设要求的两点P、Q;
若方程(*)无解,不存在满足题设要求的两点P、Q.
若
,则
代入(*)式得:![]()
即
,而此方程无解,因此
。此时
,
代入(*)式得:
即
(**)
令
,则![]()
∴
在
上单调递增, ∵
∴
,∴
的取值范围是
。
∴对于
,方程(**)总有解,即方程(*)总有解。
因此,对任意给定的正实数
,曲线
上存在两点P、Q,使得
是以O为直角顶点的直角三角形,且此三角形斜边中点在
轴上
一.选择题:DBBAC DBDBD
解析:1:由sin
x>cos
x得cos
x-sin
x<0, 即cos2x<0,所以:
+kπ<2x<
+kπ,选D.
2:∵复数3-
i的一个辐角为-π/6,对应的向量按顺时针方向旋转π/3,
所得向量对应的辐角为-π/2,此时复数应为纯虚数,对照各选择项,选(B)。
3:由
又
代入选择支检验
被排除;又由
,
即
被排除.故选
.
4:依题意有
, ①
②
由①2-②×2得,
,解得
。
又由
,得
,所以
不合题意。故选A。
5:令
,这两个方程的曲线交点的个数就是原方程实数解的个数.由于直线
的斜率为
,又
所以仅当
时,两图象有交点.由函数
的周期性,把闭区间
分成


共
个区间,在每个区间上,两图象都有两个交点,注意到原点多计一次,故实际交点有
个.即原方程有63个实数解.故选
.
6:连接BE、CE则四棱锥E-ABCD的体积VE-ABCD=
×3×3×2=6,又整个几何体大于部分的体积,所求几何体的体积V求> VE-ABCD,选(D)
|