∴⊥平面.又是矩形.∴可建立如图所示的空间直角坐标系 查看更多

 

题目列表(包括答案和解析)

精英家教网在矩形ABCD中,已知AD=6,AB=2,E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为⊙H.以DA所在直线为x轴,以DA中点O为坐标原点,建立如图所示的平面直角坐标系.
(1)求以F、E为焦点,DC和AB所在直线为准线的椭圆的方程.
(2)求⊙H的方程.
(3)设点P(0,b),过点P作直线与⊙H交于M,N两点,若点M恰好是线段PN的中点,求实数b的取值范围.

查看答案和解析>>

精英家教网已知矩形ABCD中,AB=2
2
,BC=1.以AB的中点O为原点建立如图所示的平面直角坐标系xoy.
(1)求以A,B为焦点,且过C,D两点的椭圆的标准方程;
(2)过点P(0,2)的直线l与(1)中的椭圆交于M,N两点,是否存在直线l,使得以线段MN为直径的圆恰好过原点?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

在矩形ABCD中,以DA所在直线为x轴,以DA中点O为坐标原点,建立如图所示的平面直角坐标系.已知点B的坐标为(3,2),E、F为AD的两个三等分点,AC和BF交于点G,△BEG的外接圆为⊙H.
(1)求证:EG⊥BF;
(2)求⊙H的方程;
(3)设点P(0,b),过点P作直线与⊙H交于M,N两点,若点M恰好是线段PN的中点,求实数b的取值范围.

查看答案和解析>>

如图所示的长方体中,底面是边长为的正方形,的交点,是线段的中点.

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)求二面角的大小.

【解析】本试题主要考查了线面平行的判定定理和线面垂直的判定定理,以及二面角的求解的运用。中利用,又平面平面,∴平面,又,∴平面. 可得证明

(3)因为∴为面的法向量.∵

为平面的法向量.∴利用法向量的夹角公式,

的夹角为,即二面角的大小为

方法一:解:(Ⅰ)建立如图所示的空间直角坐标系.连接,则点

,又点,∴

,且不共线,∴

平面平面,∴平面.…………………4分

(Ⅱ)∵

,即

,∴平面.   ………8分

(Ⅲ)∵,∴平面

为面的法向量.∵

为平面的法向量.∴

的夹角为,即二面角的大小为

 

查看答案和解析>>

在矩形中,以所在直线为轴,以中点为坐标原点,建立如图所示的平面直角坐标系.已知点的坐标为,E、F为的两个三等分点,交于点的外接圆为⊙

(1)求证:

(2)求⊙的方程;

(3)设点,过点P作直线与⊙交于M,N两点,若点M恰好是线段PN的中点,求实数的取值范围.

 

查看答案和解析>>


同步练习册答案