又BE平面BEN.∴BE∥平面PCD. ------------- 8分(Ⅲ)同解法二. 查看更多

 

题目列表(包括答案和解析)

(2010•南宁二模)已知四棱锥中P-ABCG中,底面ABCG是矩形,D为AG的中点,BC=2AB=2,又PB⊥平面ABCG,且PB=1,点E在棱PD上,且DE=2PE
(Ⅰ)求异面直线PA与CD所成的角的大小;
(Ⅱ)求证:BE⊥平面PCD.

查看答案和解析>>

精英家教网已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.
(Ⅰ)求异面直线PA与CD所成的角的大小;
(Ⅱ)求证:BE⊥平面PCD;
(Ⅲ)求二面角A-PD-B的大小.

查看答案和解析>>

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.

(I)求证:PD⊥BC;

(II)求二面角B—PD—C的正切值。

【解析】第一问利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,

BC在平面ABCD内 ,BC⊥CD,∴BC⊥平面PCD.

∴PD⊥BC.

第二问中解:取PD的中点E,连接CE、BE,

为正三角形,

由(I)知BC⊥平面PCD,∴CE是BE在平面PCD内的射影,

∴BE⊥PD.∴∠CEB为二面角B—PD—C的平面角,进而求解。

 

查看答案和解析>>

(本小题满分12分)

已知如图四棱锥P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(I)求异面直线PA与CD所成的角的大小;

(II)求证:BE⊥平面PCD;

(III)求二面角A—PD—B的大小.

查看答案和解析>>


同步练习册答案