(II)若数列的前n项和Tn . 查看更多

 

题目列表(包括答案和解析)

数列{an}的前n项和记为Sna1=t,an+1=Sn+1(n∈N*),数列{bn}为等差数列,且b5=9,b7=13.
(I)t为何值,数列{an}是等比数列?
(II)在(I)的条件下,若cn=anbn(n∈N*),设TN为数列{cn}的前n项和,求Tn

查看答案和解析>>

数列{an}的前n项和记为Sna1=t,an+1=Sn+1(n∈N*),数列{bn}为等差数列,且b5=9,b7=13.
(I)t为何值,数列{an}是等比数列?
(II)在(I)的条件下,若cn=anbn(n∈N*),设TN为数列{cn}的前n项和,求Tn

查看答案和解析>>

已知数列{an}的前n项和为Sn,且满足S n=n2,数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(I)求数列{an}的通项公式an和Tn
(II)若对任意的n∈N*不等式λTn<n+(-1)n恒成立,求实数λ的取值范围.

查看答案和解析>>

已知数列{an}的前n项和为Sn,且2Sn=3n3+n(n∈N*).
(1)求{an}的通项公式;
(2)已知数列{bn}满足an(2bn-1)=1.Tn=b1+b2+…+bn
(i)证明:3Tnlog2
3n+22
(n∈N*)

(ii)是否存在最大的正数k,使不等式3Tn≥log2k+log2an+1,对一切n∈N*都成立?若存在,求出k的最大值,若不存在,请说明理由.

查看答案和解析>>

已知数列{an}的前n项和为Tn=
3
2
n2-
1
2
n,且an+2+3log4bn=0(n∈N*
(I)求{bn}的通项公式;
(II)数列{cn}满足cn=an•bn,求数列{cn}的前n项和Sn
(III)若cn
1
4
m2+m-1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

一. 选择题(本大题共6小题,每小题7分,共42分)

题号

1

2

3

4

5

6

答案

C

B

C

C

A

A

二. 填空题(本大题共3小题,每小题5分,共15分)

7. 0          8. 36           9.    

三.解答题:解答应写出文字说明,证明过程或演算步骤(本大题共3小题,共43分)

10.(本小题满分14分)

解:(I)设等差数列的公差为,则

                                 …………2分

        解得                                    …………4分

              .                                                             …………5分

                                                    …………7分

   (II)由

             

                                                                  …………10分

                                                        …………12分

             

                                                                       …………14分

11.(本小题满分14分)

解法1:(Ⅰ) 取CD的中点E,连结PE、EM、EA.

∵△PCD为正三角形,∴PE⊥CD,PE=PDsin∠PDE=2sin60°=

∵平面PCD⊥平面ABCD, ∴PE⊥平面ABCD           (2分)

∵四边形ABCD是矩形

∴△ADE、△ECM、△ABM均为直角三角形

 

由勾股定理可求得:EM=,AM=,AE=3

                           (4分)

,又在平面ABCD上射影:

∴∠AME=90°,       ∴AM⊥PM                   (6分)

(Ⅱ)由(Ⅰ)可知EM⊥AM,PM⊥AM

∴∠PME是二面角P-AM-D的平面角            (8分)

∴tan ∠PME=

∴∠PME=45°

∴二面角P-AM-D为45°;                    (10分)

(Ⅲ)设D点到平面PAM的距离为,连结DM,则

 ,    ∴

                          (12分)

中,由勾股定理可求得PM=

,所以:

即点D到平面PAM的距离为                        (14分)

解法2:(Ⅰ) 以D点为原点,分别以直线DA、DC为x轴、y轴,建立如图所示的空间直角坐标系,

依题意,可得

     ……2分

      (4分)

 

,∴AM⊥PM              (6分)

 (Ⅱ)设,且平面PAM,则

   即

,   

 

,得                     (8分)

,显然平面ABCD,    ∴

结合图形可知,二面角P-AM-D为45°;     (10分)

(Ⅲ) 设点D到平面PAM的距离为,由(Ⅱ)可知与平面PAM垂直,则

=

即点D到平面PAM的距离为               (14分)

12.(本小题满分15分)

解:(Ⅰ)∵轴,∴,由椭圆的定义得:    (2分)

,∴,                  (4分)

    ∴     

,                                     (6分)

∴所求椭圆C的方程为.                             (7分)

(Ⅱ)由(Ⅰ)知点A(-2,0),点B为(0,-1),设点P的坐标为

,

-4得-

∴点P的轨迹方程为.               (9分)

设点B关于P的轨迹的对称点为,则由轴对称的性质可得:

,解得:,      (12分)

∵点在椭圆上,∴

整理得解得

∴点P的轨迹方程为,                   (14分)

经检验都符合题设,

∴满足条件的点P的轨迹方程为.                 (15分)

 

 

   

 

 

 

 


同步练习册答案