所以(Ⅱ)设AB所在直线的方程为y=x+m. 查看更多

 

题目列表(包括答案和解析)

已知曲线C1
|x|
a
+
|y|
b
=1(a>b>0)
所围成的封闭图形的面积为4
5
,曲线C1的内切圆半径为
2
5
3
.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆C2的标准方程;
(Ⅱ)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.
(1)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;
(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>

已知曲线C1
|x|
a
+
|y|
b
=1(a>b>0)
所围成的封闭图形的面积为4
5
,曲线C1的内切圆半径为
2
5
3
.记C2为以曲线C1与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆C2的标准方程;
(Ⅱ)设AB是过椭圆C2中心的任意弦,l是线段AB的垂直平分线.M是l上异于椭圆中心的点.
(1)若|MO|=λ|OA|(O为坐标原点),当点A在椭圆C2上运动时,求点M的轨迹方程;
(2)若M是l与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>

(2009•荆州模拟)如图,在矩形ABCD中,|AB|=2,|AD|=2
2
,以CD边所在直线为y轴,线段CD的中点O为原点建立直角坐标系,直线AB上的动点E、F满足|AE|2+|BF|2=|AB|2
(1)设直线CF、DE的交点为P,求点P的轨迹方程;
(2)过点Q(
5
,0)的直线l与点P的轨迹交于M、N两点,若|MN|=2,求直线l的方程.

查看答案和解析>>

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>

(选修4-4:坐标系与参数方程) (本小题满分10分)

在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.

(Ⅰ)求圆C的直角坐标方程;

(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.

23(本小题满分10分)

 已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.

(Ⅰ)证明:CM⊥SN;

(Ⅱ)求SN与平面CMN所成角的大小.

24.(本小题满分10分)

将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.

 (Ⅰ)若该硬币均匀,试求

 (Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较的大小.

查看答案和解析>>


同步练习册答案