题目列表(包括答案和解析)
已知函数f(x)=ln(x-1)+ax.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)求函数f(x)在[2,3]上的最大值;
(Ⅲ)当a=1时,令g(x)=f(ex),且存在x0>0,满足g(x0)=4x0,证明:当x>x0时,g(x)>4x.
已知函数f(x)=ax+lnx,a∈R
(Ⅰ)求函数f(x)的极值;
(Ⅱ)对于曲线上的不同两点P1(x1,y1),P2(x2,y2),如果存在曲线上的点Q(x0,y0),且x1<x0<x2,使得曲线在点Q处的切线l∥P1P2,则称l为弦P1P2的伴随切线.特别地,当x0=λx1+(1-λ)x2(0<λ<1)时,又称l为P1P2的λ-伴随切线.
(ⅰ)求证:曲线y=f(x)的任意一条弦均有伴随切线,并且伴随切线是唯一的;
(ⅱ)是否存在曲线C,使得曲线C的任意一条弦均有
-伴随切线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.
对于函数f(x)=ax2+(b+1)x+b-2,(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.
(1)当a=2,b=-2时,求f(x)的不动点;
(2)若对于任意实数b,函数f(x)恒有两个不相同的不动点,求a的取值范围;
(3)在(2)的条件下,y=f(x)图像上的两点A、B的横坐标x1,x2是函数f(x)的不动点,且x1+x2=
,求b的最小值.
对于函数f(x)=ax2+(b+1)x+b-2(a≠0),若存在实数x0,使f(x0)=x0成立,则称x0为f(x)的不动点.
(1)当a=2,b=-2时,求f()x的不动点;
(2)若对于任何实数b,函数f(x)恒有两相异的不动点,求实数a的取值范围;
(3)在(2)的条件下,若y=f(x)的图象上A、B两点的横坐标是函数f(x)的不动点,且直线y=kx+
是线段AB的垂直平分线,求实数b的最小值.
已知函数f(x)=ln(x-2)-
,其中a是不等于0的常数,e为自然对数的底数.
(1)当a>0时,求函数f(x)的单调区间;
(2)若f(x)在x0处取得极值,且
,而f(x)≥0在[e+2,e2+2]上恒成立,求实数a的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com