题目列表(包括答案和解析)
在
中,角
的对边分别为
,
。
(1)求
的值;
(2)求
的面积.
【解析】本试题主要是考查了解三角形中正弦定理和三角形面积公式的运用。
在△
中,
分别为内角
的对边,且
.
(1)求角
的大小;
(2)若
+
=
,试判断△
的形状.
【解析】本试题主要考查了解三角形中正弦定理和余弦定理的运用。求解变和角,并定形的问题。
在△
中,
分别为内角
的对边,且
△
的面积为15
,求边
的长.
【解析】本试题主要考查了解三角形的运用,求解三角形的边长和面积的运算。
在△
中,∠
,∠
,∠
的对边分别是
,且
.
(1)求∠
的大小;(2)若
,
,求
和
的值.
【解析】第一问利用余弦定理得到
第二问
(2) 由条件可得 ![]()
将
代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
在
中,已知
,面积
,
(1)求
的三边的长;
(2)设
是
(含边界)内的一点,
到三边
的距离分别是![]()
①写出
所满足的等量关系;
②利用线性规划相关知识求出
的取值范围.
【解析】第一问中利用设
中角
所对边分别为![]()
由
得![]()
![]()
又由
得
即
![]()
又由
得
即
![]()
又
又
得![]()
即
的三边长![]()
![]()
第二问中,①
得
![]()
故![]()
②![]()
令
依题意有![]()
作图,然后结合区域得到最值。
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com