在中.,即为以为直角的直角三角形. 查看更多

 

题目列表(包括答案和解析)

△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则

(A)   (B)     (C)    (D)

【解析】在直角三角形中,,则,所以,所以,即,选D.

 

查看答案和解析>>

中,边的高为,若,则

(A)       (B)      (C)      (D) 

【解析】如图,在直角三角形中,,则,所以,所以,即,选D.

 

查看答案和解析>>

在多面体和旋转体中的有关计算通常转化为平面图形(三角形或特殊的四边形)来计算.对于棱锥中的计算问题往往要构造直角三角形,即棱锥的高、斜高以及斜高在底面上的射影构成的直角三角形,或者由棱锥的高、侧棱以及侧棱在底面上的射影构成的三角形,对于棱台往往要构造直角梯形和直角三角形;在旋转体中通常要过旋转轴作截面得到直角三角形、矩形或等腰梯形.试解决下列问题:

圆台上底的面积为16πcm2,下底半径为6 cm,母线长为10 cm,那么,圆台的侧面积和体积是多少?

查看答案和解析>>

已知正方体中,分别为的中点,那么异面直线所成角的余弦值为____________.

【解析】如图连接,则,所以所成的角即为异面直线所成的角,设边长为2,则,在三角形.

 

查看答案和解析>>

已知函数的图象过坐标原点O,且在点处的切线的斜率是.

(Ⅰ)求实数的值; 

(Ⅱ)求在区间上的最大值;

(Ⅲ)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.

【解析】第一问当时,,则

依题意得:,即    解得

第二问当时,,令,结合导数和函数之间的关系得到单调性的判定,得到极值和最值

第三问假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

(Ⅰ)当时,,则

依题意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①当时,,令

变化时,的变化情况如下表:

0

0

+

0

单调递减

极小值

单调递增

极大值

单调递减

。∴上的最大值为2.

②当时, .当时, ,最大值为0;

时, 上单调递增。∴最大值为

综上,当时,即时,在区间上的最大值为2;

时,即时,在区间上的最大值为

(Ⅲ)假设曲线上存在两点P、Q满足题设要求,则点P、Q只能在轴两侧。

不妨设,则,显然

是以O为直角顶点的直角三角形,∴

    (*)若方程(*)有解,存在满足题设要求的两点P、Q;

若方程(*)无解,不存在满足题设要求的两点P、Q.

,则代入(*)式得:

,而此方程无解,因此。此时

代入(*)式得:    即   (**)

 ,则

上单调递增,  ∵     ∴,∴的取值范围是

∴对于,方程(**)总有解,即方程(*)总有解。

因此,对任意给定的正实数,曲线上存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上

 

查看答案和解析>>


同步练习册答案