题目列表(包括答案和解析)
| n | n+a |
(本小题满分12分)
等差数列
的前
项和为
.
(Ⅰ)求数列
的通项
与前
项和
;
(Ⅱ)设
,求证:数列
中任意不同的三项都不可能成为等比数列.
(本小题满分12分)已知函数
.
(Ⅰ)求函数
的单调递增区间;
(Ⅱ)数列
满足:
,且
,记数列
的前n项和为
,
且
.
(ⅰ)求数列
的通项公式;并判断
是否仍为数列
中的项?若是,请证明;否则,说明理由.
(ⅱ)设
为首项是
,公差
的等差数列,求证:“数列
中任意不同两项之和仍为数列
中的项”的充要条件是“存在整数
,使
”
已知等差数列
的前
项和为
,![]()
(1)求数列
的通项公式
与前
项和
;
(2)设
求证:数列
中任意不同的三项都不可能成为等比数列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com