(2)由题意..所以侧面.又侧面.所以侧面侧面.作垂足.连接.则平面. 查看更多

 

题目列表(包括答案和解析)

如图,,…,,…是曲线上的点,,…,,…是轴正半轴上的点,且,…,,… 均为斜边在轴上的等腰直角三角形(为坐标原点).

(1)写出之间的等量关系,以及之间的等量关系;

(2)求证:);

(3)设,对所有恒成立,求实数的取值范围.

【解析】第一问利用有得到

第二问证明:①当时,可求得,命题成立;②假设当时,命题成立,即有则当时,由归纳假设及

第三问 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

解:(1)依题意,有,………………4分

(2)证明:①当时,可求得,命题成立; ……………2分

②假设当时,命题成立,即有,……………………1分

则当时,由归纳假设及

解得不合题意,舍去)

即当时,命题成立.  …………………………………………4分

综上所述,对所有.    ……………………………1分

(3) 

.………………………2分

因为函数在区间上单调递增,所以当时,最大为,即

.……………2分

由题意,有. 所以,

 

查看答案和解析>>

中,是三角形的三内角,是三内角对应的三边,已知成等差数列,成等比数列

(Ⅰ)求角的大小;

(Ⅱ)若,求的值.

【解析】第一问中利用依题意,故

第二问中,由题意又由余弦定理知

,得到,所以,从而得到结论。

(1)依题意,故……………………6分

(2)由题意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>

已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.

【解析】本试题主要考查了二次方程根的问题的综合运用。运用反证法思想进行证明。

先反设,然后推理论证,最后退出矛盾。证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.显然不成立。

证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.                                      ①

由题意a、b、c互不相等,∴①式不能成立.

∴假设不成立,即三个方程中至少有一个方程有两个相异实根.

 

查看答案和解析>>

在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项;

(2)求数列的通项公式,假设,试求数列的前项和

(3)若对一切恒成立,求的取值范围。

【解析】第一问中利用)同理得到

第二问中,由题意得到:

累加法得到

第三问中,利用恒成立,转化为最小值大于等于即可。得到范围。

(1)同理得到             ……2分 

(2)由题意得到:

 又

              ……5分

 ……8分

(3)

 

查看答案和解析>>

在复平面内, 是原点,向量对应的复数是=2+i。

(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数

(Ⅱ)复数对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。

【解析】第一问中利用复数的概念可知得到由题意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二问中,由题意得,=(2,1)  ∴

同理,所以A、B、C、D四点到原点O的距离相等,

∴A、B、C、D四点在以O为圆心,为半径的圆上

(Ⅰ)由题意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四点在同一个圆上。                              2分

证明:由题意得,=(2,1)  ∴

  同理,所以A、B、C、D四点到原点O的距离相等,

∴A、B、C、D四点在以O为圆心,为半径的圆上

 

查看答案和解析>>


同步练习册答案