题目列表(包括答案和解析)
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| r1 |
| 1 |
| r2 |
| b2 |
| a-ccosθ |
| b2 |
| a-ccos(π-θ) |
| b2 |
| a+ccosθ |
| 1 |
| r |
| 1 |
| r |
| 2a |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
在△ABC中,
为三个内角
为三条边,
且![]()
(I)判断△ABC的形状;
(II)若
,求
的取值范围.
【解析】本题主要考查正余弦定理及向量运算
第一问利用正弦定理可知,边化为角得到![]()
![]()
所以得到B=2C,然后利用内角和定理得到三角形的形状。
第二问中,
![]()
得到。
(1)解:由
及正弦定理有:![]()
∴B=2C,或B+2C
,若B=2C,且
,∴
,
;∴B+2C
,则A=C,∴
是等腰三角形。
(2)
![]()
△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。
![]()
【解析】本试题主要考查了余弦定理的运用。利用由题意得
,![]()
![]()
,
并且
有
得到结论。
解:(Ⅰ)由题意得
,![]()
………1分
…………1分
(Ⅱ)
………………1分
![]()
![]()
![]()
如图,点P为斜三棱柱ABC-A1B1C1的侧棱BB1上一点,PM⊥BB1交AA1于点M,PN⊥BB1交CC1于点N.
(1)求证:CC1⊥MN.
(2)在任意△DEF中,
有由余弦定理DE2=DF2+EF2-2DF·EFcos∠DFE,拓展到空间,类比三角形的余弦定理,写出一个斜三棱柱的三个侧面积与其中两个侧面所成的二面角之间的关系式,并加以证明.
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视
图的侧视图、俯视图.在直观图中,
是
的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求证:EM∥平面ABC;
(2)试问在棱DC上是否存在点N,使NM⊥平面
?
若存在,确定点N的位置;若不存在,请说明理由.
(3)求二面角D—EB—A的大小的余弦值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com