请选取其中的两个论断作为条件.余下的一个作为结论.构造一个真命题: (用论断的序号和“ 表示). 查看更多

 

题目列表(包括答案和解析)

设函数f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:①它的图象关于直线x=
π
12
对称;②它的图象关于点(
π
3
,0
)对称;③它的最小正周期是T=π;④它在区间[-
π
6
,0)
上是增函数.
以其中的两个论断作为条件,余下的两个论断作为结论,写出你认为正确的两个命题,并对其中的一个命题加以证明.

查看答案和解析>>

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;     
②它的图象关于点(
π
3
,0)
对称;
③它的周期是π;                   
④在区间[0,
π
6
)
上是增函数.
以其中两个论断作为条件,余下的一个论断作为结论,写出你认为正确的命题:
条件
①③
①③
结论
;(用序号表示)

查看答案和解析>>

平移f (x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
),给出下列4个论断:(1)图象关于x=
π
12
对称(2)图象关于点(
π
3
,0)对称      (3)最小正周期是π      (4)在[-
π
6
,0]上是增函数以其中两个论断作为条件,余下论断为结论,写出你认为正确的两个命题:(1)
①②⇒③④
①②⇒③④
.(2)
①③⇒②④
①③⇒②④

查看答案和解析>>

设函数f(x)=sin(ωx+?)(ω>0,-
π
2
<?<
π
2
)
,给出以下四个论断:
①它的图象关于直线x=
π
12
对称;
②它的图象关于点(
π
3
,0)对称;
③它的最小正周期是π;
④在区间[-
π
6
,0
]上是增函数.
以其中两个论断作为条件,余下论断作为结论,一个正确的命题:
条件
3
,结论
A、①②⇒③④
B、③④⇒①②
C、②④⇒①③
D、①③⇒②④

查看答案和解析>>

设函数f(x)=sin(ωx+φ)(ω>0,-
π
2
<?<
π
2
),给出以下四个论断:
①它的图象关于直线x=
π
12
对称;        
②它的周期为π;
③它的图象关于点(
π
3
,0)对称;      
④在区间[-
π
6
,0]上是增函数.
以其中两个论断作为条件,余下两个论断作为结论,写出你认为正确的两个命题:
(1)
①③⇒②④
①③⇒②④
; (2)
①②⇒③④
①②⇒③④

查看答案和解析>>

 

评分说明:

1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.

2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.

3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.

4.只给整数分数.选择题不给中间分.

 

一.选择题

(1)D   (2)B   (3)B   (4)C   (5)B   (6)C

(7)C   (8)A   (9)B   (10)D (11)A (12)D

二.填空题

(13)300;  (14)480;  (15)①、②③或①、③②;  (16)103.

三.解答题

(17)解:

(Ⅰ)因为点的坐标为,根据三角函数定义可知

所以.     2分

(Ⅱ)∵,∴. 3分

由余弦定理,得 

.   5分

,∴,∴. 7分

,∴.     9分

故BC的取值范围是.(或写成) 10分

(18)解:

(Ⅰ)记“恰好选到1个曾经参加过社会实践活动的同学”为事件的,则其概率为

.      4分

(Ⅱ)随机变量2,3,4,

;     6分

;  8分

.     10分

∴随机变量的分布列为

2

3

4

P

.     12分

(19)证:

(Ⅰ)因为四边形是矩形∴

又∵ABBC,∴平面.     2分

平面,∴平面CA1B⊥平面A1ABB1.       3分

解:(Ⅱ)过A1A1DB1BD,连接

平面

BCA1D

平面BCC1B1

故∠A1CD为直线与平面所成的角.

       5分

在矩形中,

因为四边形是菱形,∠A1AB=60°, CB=3,AB=4,

. 7分

(Ⅲ)∵,∴平面

到平面的距离即为到平面的距离. 9分

连结交于点O,

∵四边形是菱形,∴

∵平面平面,∴平面

即为到平面的距离. 11分

,∴到平面的距离为.  12分

(20)解:

(Ⅰ)∵,     2分

,得

因为,所以,   4分

从而函数的单调递增区间为. 5分

(Ⅱ)当时,恒有||≤3,即恒有成立.

即当时, 6分

由(Ⅰ)可知,函数的单调递增区间为,单调递减区间为

所以,.        ① 8分

所以,.          ②       10分

由①②,解得

所以,当时,函数上恒有||≤3成立.    12分

(21)解:

(Ⅰ)由已知,

解得  2分

,∴

轴,.  4分

成等比数列.    6分

(Ⅱ)设,由

,得 

   8分

.     10分

,∴.∴,或

∵m>0,∴存在,使得.     12分

(22)解:

(Ⅰ)由题意,

又∵数列为等差数列,且,∴.   2分

,∴.     4分

(Ⅱ)的前几项依次为

=4,∴是数列中的第11项.       6分

(Ⅲ)数列中,项(含)前的所有项的和是:

,     8分

时,其和为

时,其和为.      10分

又因为2009-1077=932=466×2,是2的倍数,

故当时,.    1

 


同步练习册答案