18. 一个口袋装有编号分别为1.2.3.4.5.的6个球.从中任取3个球 (I)求3个球中最大编号为4的概率, (Ⅱ)求3个球中至少有1个编号为3的概率. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.

(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;

(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

(本小题满分12分)一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.
(Ⅰ)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(Ⅱ)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.

查看答案和解析>>

(本小题满分12分)
一个口袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望。

查看答案和解析>>

(本小题满分12分)一个口袋内装有大小相同的5 个球,其中3个白球分别记为A1、A2、A3;2个黑球分别记为B1、B2,从中一次摸出2个球.

(Ⅰ)写出所有的基本事件;

(Ⅱ)求摸出2球均为白球的概率

 

查看答案和解析>>

(本小题满分12分)

一个口袋中装有大小相同的2个白球和3个黑球.

(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;

(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望。

 

查看答案和解析>>

一、选择题(每小题5分,共50分)

题号

1

2

3

4

5

6

7

8

9

10

答案

C

B

A

D

B

D

A

B

B

A

二、填空题(每小题4分,共24分)

11.;    12.;     13.;    14.    15.    16.1

三、解答题(本大题共6小题,共76分,以下各题为累计得分,其他解法请相应给分)

17.解(I)由题意得

(Ⅱ)

于是

18.解:(I)任取3个球的基本情况有(1,2,3),(1,2,3),(1,2,4),(1,2,5),(1,3,3)(1,3,4)

(1,3,5),(1,3,4),(1,3,5),(1,4,5),(2,3,3),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(2

,4,5),(3,3,4),(3,3,5),(3,4,5),(3,4,5)共20种,

 其中最大编号为4的有(1,2,4),(1,3,4),(1,3,4),(2,3,4),(2,3,4),

(3,3,4)共6种,所以3个球中最大编号为4的概率为

(Ⅱ)3个球中有1个编号为3的有(1,2,3),(1,2,3),(1,3,4),(1,3,5),(1,

3,4),(1,3,5),(2,3,4),(2,3,5),(2,3,4),(2,3,5),(3,4,5),(3

4,5)共12种

有2个编号为3的有(1,3,3),(2,3,3),(3,3,4),(3,3,5)共4种

所以3个球中至少有个编号为3的概率是

19.解:(I)是长方体,平面,又

是正方形。,又

(Ⅱ)

(Ⅲ)连结

又有上知

由题意得

于是可得上的高为6

20.解:(I)

,得

①若,则当。当时,

内是增函数,在内是减函数,

②若则当时,时,

内是增函数,在内是减函数

(Ⅱ)当时,内是增函数,

内是增函数。

由题意得  解得

时,内是增函数,内是增函数。

由题意得 解得

综上知实数的取值范围为

(21)解:(1)设的公比为,由题意有

解得(舍)

(Ⅱ)是以2为首项,-1为公差的等差数列

(Ⅲ)显然

时,时,

时,故当

22.解:(I)由题意知

设椭圆中心关于直线的对称点为

于是方程为

得线段的中点为(2,-1),从而的横坐标为4,

椭圆的方程为

(Ⅱ)由题意知直线存在斜率,设直线的方程为代入

整理得

不合题意。

设点

由①知

直线方程为

代入

整理得

再将代入计算得

直线轴相交于定点(1,0)

 

 

 

 

 


同步练习册答案