35乙 查看更多

 

题目列表(包括答案和解析)

甲乙两人进行乒乓球冠军总决赛,在一局中甲获胜的概率是
3
5
,乙获胜的概率是
2
5
.比赛采用五战三胜制,但不一定打满五场,当一人首先获得三场比赛的胜利即为冠军.求两人比赛场次ξ的分布列及期望.(注:直接写出答案的直接不给分)

查看答案和解析>>

甲乙两人射击,甲射击一次击中目标的概率是
4
5
,乙射击一次击中目标的概率是
3
5
,甲乙两人射击是否击中目标互不影响,则两人同时射击一次都击中目标的概率是(  )

查看答案和解析>>

甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下,

甲运动员

射击环数

频数

频率

7

10

0.1

8

10

0.1

9

0.45

10

35

合计

100

1

乙运动员   

射击环数

频数

频率

7

8

0.1

8

12

0.15

9

10

0.35

合计

80

1

若将频率视为概率,回答下列问题,

(1)求甲运动员击中10环的概率

(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率

(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及.

查看答案和解析>>

甲乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7,8,9,10环,且每次射击成绩互不影响,射击环数的频率分布表如下,

甲运动员

射击环数

频数

频率

7

10

0.1

8

10

0.1

9

0.45

10

35

合计

100

1

乙运动员        

射击环数

频数

频率

7

8

0.1

8

12

0.15

9

10

0.35

合计

80

1

若将频率视为概率,回答下列问题,

(1)求甲运动员击中10环的概率

(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率

(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及.

查看答案和解析>>

甲乙两班进行一门课程的考试,按照学生考试成绩的优秀和不优秀统计后得到如右的

列联表:

 

优秀

不优秀

总计

甲班

15

35

50

乙班

10

40

50

总计

25

75

100

(1)据此数据有多大的把握认为学生成绩优秀与班级有关?

(2)用分层抽样的方法在成绩优秀的学生中随机抽取5名学生,问甲、乙两班各应抽取多少人

(3)在(2)中抽取的5名学生中随机选取2名学生介绍学习经验, 求至少有一人来自乙班的概

率.(,其中)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

查看答案和解析>>

一、选择题(本大题共8小题,每小题5分,共40分)

1.D      2.A      3.B      4.C       5.D      6.B     7.C      8. A

二、填空题(本大题共6小题,每小题5分,共30分)

9.点               10.               11. 6 , 60

12.                13.                   14. ,

注:两个空的填空题第一个空填对得2分,第二个空填对得3分.

三、解答题(本大题共6小题,共80分)

15. (本小题满分13分)

解:(Ⅰ)设等比数列的公比为,依题意有,    (1)

,将(1)代入得.所以.  ……………3分

于是有                             ………………4分

解得                             ………………6分

是递增的,故.                   ………………7分

所以.                                         ………………9分

   (Ⅱ).                                …………………11分

.                                       ………………13分

16.(本小题满分13分)

解:(Ⅰ)在△中,由.

   所以.            …………………5分

(Ⅱ)由.  ………………………………….9分

,=;          ………………………11分

于是有,解得.           ……………………………13分

 

17.(本小题满分14分)

解法一:(Ⅰ)∵正方形,∴

又二面角是直二面角,

⊥平面.

平面

.

是矩形,的中点,

==

=

⊥平面

平面,故平面⊥平面.          ……………………5分

 (Ⅱ)如图,由(Ⅰ)知平面⊥平面,且交于,在平面内作,垂足为,则⊥平面.

        ∴∠与平面所成的角.

∴在Rt△中,=.  

 .                            

与平面所成的角为 .                 ………………………9分

   (Ⅲ)由(Ⅱ),⊥平面.作,垂足为,连结,则

        ∴∠为二面角的平面角.                 …………….11分

∵在Rt△中,=,在Rt△中,.

∴在Rt△中,

即二面角的大小为arcsin.    ………………………………14分

解法二:

如图,以为原点建立直角坐标系

(0,0,0),(0,2,0),

(0,2,2),,0),

,0,0).

   (Ⅰ) =(,0),=(,0),

         =(0,0,2),

?=(,0)?(,0)=0,

 ? =(,0)?(0,0,2)= 0.

⊥平面,又平面,故平面⊥平面.     ……5分

   (Ⅱ)设与平面所成角为.

        由题意可得=(,0),=(0,2,2 ),=(,0).

        设平面的一个法向量为=(,1),

        由.

          .

与平面所成角的大小为.            ……………..9分

   (Ⅲ)因=(1,-1,1)是平面的一个法向量,

        又⊥平面,平面的一个法向量=(,0,0),

        ∴设的夹角为,得

        ∴二面角的大小为.         ………………………………14分

18. (本小题满分13分)

解: (Ⅰ)由已知甲射击击中8环的概率为0.2,乙射击击中9环的概率为0.4,则所求事件的概率

       .                                     ………………4分

  (Ⅱ) 设事件表示“甲运动员射击一次,击中9环以上(含9环)”, 记“乙运动员射击1次,击中9环以上(含9环)”为事件,则

.                           ………………………6分

.                          ………………………8分

“甲、乙两运动员各自射击两次,这4次射击中恰有3次击中9环以上(含9环)”包含甲击中2次、乙击中1次,与甲击中1次、乙击中2次两个事件,显然,这两个事件互斥.

甲击中2次、乙击中1次的概率为

;            ……………………..10分

甲击中1次、乙击中2次的概率为

.             …………………12分

所以所求概率为.                      

答: 甲、乙两运动员各自射击两次,这4次射击中恰有3次击中9环以上的概率为.  ……….13分

                                                      

19.(本小题满分14分)

解: (Ⅰ) 由已知 , 又圆心,则 .故   .

  所以直线垂直.                        ………………………3分

        (Ⅱ) 当直线轴垂直时,易知符合题意;        ………………4分

当直线与轴不垂直时,设直线的方程为.   …………5分

由于,所以

,解得.         ………………7分

故直线的方程为.          ………………8分

         (Ⅲ)当轴垂直时,易得,,又

,故.                    ………………10分

的斜率存在时,设直线的方程为,代入圆的方程得

.则

,即,

.又由,

.

.

综上,的值与直线的斜率无关,且.    …………14分

另解一:连结,延长交于点,由(Ⅰ)知.又,

故△∽△.于是有.

               ………………………14分

另解二:连结并延长交直线于点,连结由(Ⅰ)知,

所以四点

同步练习册答案