题目列表(包括答案和解析)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
|
日需求量n |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
|
频数 |
10 |
20 |
16 |
16 |
15 |
13 |
10 |
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
【命题意图】本题主要考查给出样本频数分别表求样本的均值、将频率做概率求互斥事件的和概率,是简单题.
【解析】(Ⅰ)当日需求量
时,利润
=85;
当日需求量
时,利润
,
∴
关于
的解析式为
;
(Ⅱ)(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为
=76.4;
(ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为
![]()
已知点
(
),过点
作抛物线
的切线,切点分别为
、
(其中
).
(Ⅰ)若
,求
与
的值;
(Ⅱ)在(Ⅰ)的条件下,若以点
为圆心的圆
与直线
相切,求圆
的方程;
(Ⅲ)若直线
的方程是
,且以点
为圆心的圆
与直线
相切,
求圆
面积的最小值.
【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。
中∵直线
与曲线
相切,且过点
,∴
,利用求根公式得到结论先求直线
的方程,再利用点P到直线的距离为半径,从而得到圆的方程。
(3)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
,借助于函数的性质圆
面积的最小值![]()
(Ⅰ)由
可得,
. ------1分
∵直线
与曲线
相切,且过点
,∴
,即
,
∴
,或
, --------------------3分
同理可得:
,或
----------------4分
∵
,∴
,
. -----------------5分
(Ⅱ)由(Ⅰ)知,
,
,则
的斜率
,
∴直线
的方程为:
,又
,
∴
,即
. -----------------7分
∵点
到直线
的距离即为圆
的半径,即
,--------------8分
故圆
的面积为
. --------------------9分
(Ⅲ)∵直线
的方程是
,
,且以点
为圆心的圆
与直线
相切∴点
到直线
的距离即为圆
的半径,即
, ………10分
∴![]()
,
当且仅当
,即
,
时取等号.
故圆
面积的最小值
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com