题目列表(包括答案和解析)
| 3 |
| 3 |
| π |
| 3 |
(03年新课程高考)已知常数a>0,向量c=(0,a),i=(1,0),经过原点O以c+λi为方向向量的直线与经过定点A(0,a)以i-2λc为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.
(满分12分)直线l 与抛物线y2 = 4x 交于两点A、B,O 为原点,且
= -4.
(I) 求证:直线l 恒过一定点;
(II) 若 4
≤| AB | ≤
,求直线l 的
斜率k 的取值范围;
(Ⅲ) 设抛物线的焦点为F,∠AFB = θ,试问θ 角
能否
等于120°?若能,求出相应的直线l 的方程;若不能,请说明理由.![]()
(本小题满分12分)
第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会决定对礼仪小姐进行培训.已知礼仪小姐培训班的项目A与项目B成绩抽样统计表如下,抽出礼仪小姐
人,成绩只有
、
、
三种分值,设
分别表示项目A与项目B成绩.例如:表中项目A成绩为
分的共7+9+4=20人.已知
且
的概率是
.![]()
(I)求
;
(II)若在该样本中,再按项目B的成绩分层抽样抽出
名礼仪小姐,则
的礼仪小姐中应抽多少人?
(Ⅲ)已知
,
,项目B为3分的礼仪小姐中,求项目A得3分的人数比得4分人数多的概率.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com