的结论下.设.求函数的最小值. 查看更多

 

题目列表(包括答案和解析)

函数f(x)=x3+
12
ax2+x+1
(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.

查看答案和解析>>

函数f(x)=x3+
1
2
ax2+x+1
(x∈R).
(1)若f(x)在x∈(-∞,+∞)上是增函数,求实数a的取值范围;
(2)在(1)的条件下,设g(x)=e2x-aex,x∈[0,ln2],求函数g(x)的最小值;
(3)当a=0时,曲线y=f(x)的切线的斜率的取值范围记为集合A,曲线y=f(x)上不同两点P(x1,y1),Q(x2,y2)连线的斜率的取值范围记为集合B,你认为集合A,B之间有怎样的关系,并证明你的结论.

查看答案和解析>>

设函数f(x)=x2+x.(1)解不等式:f(x)<0;(2)请先阅读下列材料,然后回答问题.
材料:已知函数g(x)=,问函数g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由.一个同学给出了如下解答:
解:令u=-f(x)=-x2-x,则u=-(x+2+
当x=-时,u有最大值,umax=,显然u没有最小值,
∴当x=-时,g(x)有最小值4,没有最大值.
请回答:上述解答是否正确?若不正确,请给出正确的解答;
(3)设an=,请提出此问题的一个结论,例如:求通项an.并给出正确解答.
注意:第(3)题中所提问题单独给分,.解答也单独给分.本题按照所提问题的难度分层给分,解答也相应给分,如果同时提出两个问题,则就高不就低,解答也相同处理.

查看答案和解析>>

已知函数f(x)=
13
x3+ax2+bx,且f′(-1)=0.
(1)试用含a的代数式表示b,并求f(x)的单调区间;
(2)令a=-1,设函数f(x)在x1,x2(x1<x2)处取得极值,记点M (x1,f(x1)),N(x2,f(x2)),P(m,f(m)),x1<m<x2,请仔细观察曲线f(x)在点P处的切线与线段MP的位置变化趋势,并解释以下问题:
(Ⅰ)若对任意的t∈(x1,x2),线段MP与曲线f(x)均有异于M,P的公共点,试确定t的最小值,并证明你的结论;
(Ⅱ)若存在点Q(n,f(n)),x≤n<m,使得线段PQ与曲线f(x)有异于P、Q的公共点,请直接写出m的取值范围(不必给出求解过程).

查看答案和解析>>

已知函数f(x)=lnx,g(x)=
12
ax2+bx (a≠0).

(Ⅰ)若a=-2时,函数h(x)=f(x)-g(x)在其定义域是增函数,求b的取值范围;
(Ⅱ)在(Ⅰ)的结论下,设函数φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;

查看答案和解析>>

 

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

B

A

D

B

C

C

A

B

C

B

A

13.     14. 2   15.    16. ① ④

17.1) ……2分

     

                         ……4分 

,对称中心           ……6分

(2)                         ……8分

                                 ……10分

                   ……12分

18. 解:1)                     ……5分

(2)分布列:

0

1

2

3

4

评分:下面5个式子各1分,列表和期望计算2分(5+2=7分)

 

19. 解:(1)

   

    所以

   (2)设    ……8分

    当  

      

    当     

    所以,当

的最小值为……………………………… 12分

 

20.解法1:

(1)过S作,连

  

        ……4分

(2),∴是平行四边形

故平面

过A作,连

为平面

二面角平面角,而

应用等面积:

故题中二面角为                         ……4分

(3)∵距离为距离

又∵,∴平面,∴平面

∴平面平面,只需B作SE连线BO1,BO1

设线面角为

,故线面角为          ……4分

解法2:

(1)同上

(2)建立直角坐标系

平面SDC法向量为

设平面SAD法向量

,取

  ∴ 

∴二面角为

(3)设线面角为

 

21.(1)

时,        

                   

……                                 

             

     

                        

          

(3分)

时,

 

……

  (5分)

(6分)

(2)

又∵,∴

(12分)

 

22.(1)设

,∴  (3分)

所以P点的轨迹是以为焦点,实半轴长为1的双曲线的右支(除顶点)。(4分)

(2)设PE斜率为,PR斜率为

PE:    PR:

  …………(6分)

由PF和园相切得:,PR和园相切得:

故:两解

故有:

  ……(8分)

又∵,∴,∴  (11分)

   (14分)

 

 


同步练习册答案