题目列表(包括答案和解析)
第一象限内有一动点
,在过点
且方向向量
的直线上运动,则
的最大值为________________________
已知圆C的方程为:x2+y2=4.
(1)求过点P(1,2)且与圆C相切的直线l的方程;
(2)直线l过点P(1,2),且与圆C交于A、B两点,若|AB|=2
,求直线l的方程;
(3)圆C上有一动点M(x0,y0),
=(0,y0),若向量
=
+
,求动点Q的轨迹方程,并说明此轨迹是什么曲线.
| 3 |
| ON |
| OQ |
| OM |
| ON |
一、选择题 CAAD ABDAB CB
二、填空题
.
.
.
.

三、解答题
.





的周期为
,最大值为
.
由
得
,
又
,
,
∴
或
或
∴
或
或 
.
显然事件
即表示乙以
获胜,
∴

的所有取值为
.



∴
的分布列为:

3
4
5




数学期望
.
.
当
在
中点时,
平面
.
延长
、
交于
,则
,
连结
并延长交
延长线于
,
则
,
.
在
中,
为中位线,
,
又
,
∴
.
∵
中,
∴
,即
又
,
,
∴
平面
∴
.
∴
为平面
与平面
所成二面
角的平面角。
又
,
∴所求二面角的大小为
.
.
由题意知
的方程为
,设
,
.
联立
得
.
∴
.
由抛物线定义
,
∴
.抛物线方程
,
由题意知
的方程为
.设
,
则
,
,
∴
.
由
知
,
,
,
.
则
∴当
时,
的最小值为
.
.
∵
,
∴
.
∴
∴
即
∴
s


时,也成立
∴

,
∴

∴


∵
,
又




∴
.
,
∵
在
上单调,
∴
或
在
上恒成立.
即
或
恒成立.
或
在
上恒成立.
又
,
∴
或
.
由
得:
,
化简得
当
时,
,
,
∴
又
,
∴
当
时,
,
综上,实数
的取值范围是
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com