查看更多

 

题目列表(包括答案和解析)

.(本小题满分12分)设函数的定义域为R,当时,,且对任意实数,都有成立,数列满足
(1)求的值;
(2)若不等式对一切均成立,求的最大值.

查看答案和解析>>

.(本小题满分12分)已知平面上三点
(1)若O为坐标原点),求向量夹角的大小;
(2)若,求的值.

查看答案和解析>>

.(本小题满分12分) 
已知数列满足
(1)求证:数列是等比数列;
(2)求数列的通项公式。

查看答案和解析>>

.(本小题满分12分)已知数列中,)。
(1)求的值;
(2)设,是否存在实数,使数列为等差数列,若存在请求其通项,若不存在请说明理由。

查看答案和解析>>

.(本小题满分12分)数列的前项和记为
(1) 求的通项公式;
(2) 等差数列的各项为正,其前项和为,且

查看答案和解析>>

一、选择题   CAAD    ABDAB      CB

二、填空题                

三、解答题  

         

         

         

       的周期为,最大值为.

       

         又

         ∴

          ∴ 或

显然事件即表示乙以获胜,

的所有取值为.

 

的分布列为:

3

4

5

数学期望.

   .中点时,平面.

延长交于,则

连结并延长交延长线于

.

中,为中位线,

.

中,

    ∴,即

平面    ∴.            

为平面与平面所成二面

角的平面角。

∴所求二面角的大小为.

.由题意知的方程为,设.

     联立  得.

   ∴.

   由抛物线定义

.抛物线方程

由题意知的方程为.设

.

.

∴当时,的最小值为.

.

        ∴.

       ∴

       ∴

    即

s

    

   

  时,也成立

  ∴

 

 

.

上单调,

上恒成立.

恒成立.

上恒成立.

.

得:

化简得

时,

时,

综上,实数的取值范围是

 


同步练习册答案