已知函数(为常数)的最大值为. 查看更多

 

题目列表(包括答案和解析)

(本小题16分)

已知函数为正常数。

(1)若,且,求函数的单调增区间;

(2)若,且对任意,都有,求的的取值范围。

 

查看答案和解析>>

(本小题16分)

已知函数为正常数。

⑴若,且,求函数的单调增区间;

⑵若,且对任意,都有,求的的取值范围。

查看答案和解析>>

(本小题16分)

已知函数为正常数。

⑴若,且,求函数的单调增区间;

⑵若,且对任意,都有,求的的取值范围。

查看答案和解析>>

(本小题16分)

已知定义在上的函数和数列满足下列条件:,当时,,且存在非零常数使恒成立.

(1)若数列是等差数列,求的值;

(2)求证:数列为等比数列的充要条件是

(3)已知,且),数列的前项是,对于给定常数,若的值是一个与无关的量,求的值.

查看答案和解析>>

(本小题满分16分)定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.

已知函数.

(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;

(2)若函数上是以3为上界的有界函数,求实数的取值范围;

(3)若,函数上的上界是,求的取值范围.

查看答案和解析>>

(必修1部分,满分100分)

一、填空题(每小题5分,共45分)

1.     2.             3.                      4.         5.

6.                  7.       8.          9.

二、解答题(共55分)

10.

11.解:⑴设,由,得,故

因为,所以

,所以,即,所以

⑵由题意得上恒成立,即上恒成立.

,其图象的对称轴为直线

所以上递减,所以当时,有最小值.故

12.解:⑴设一次订购量为个时,零件的实际出厂价恰好为元,则(个)

⑶当销售一次订购量为个时,该工厂的利润为,则

故当时,元;元.

13.解:⑴由已知条件得对定义域中的均成立.

 ,即.            

对定义域中的均成立.  ,即(舍正),所以.       

⑵由⑴得.设

时,.                            

时,,即.时,上是减函数.

同理当时,上是增函数.

函数的定义域为

.为增函数,要使值域为

(无解)            

,              为减函数,

要使的值域为,  则.               

 

(必修4部分,满分60分)

一、填空题(每小题6分,共30分)

1.        2.           3.        4.      5. ②③

二、解答题(共30分)

6. ⑴

⑵对称中心:,增区间:

.

7.解:⑴

时,则时,

时,则时,

时,则时,

,则

⑵若,则;若解之,得(舍),;若,则(舍).

综上所述,

⑶当时,,即当时,

时,,即当时,

 

 


同步练习册答案