P(A)=, ----6分ξ30-a-70030p 查看更多

 

题目列表(包括答案和解析)

(2012•安徽模拟)国家统计局为研究城市未婚青年的年收入与是否购房之间的关系,随机统计了某市20名未婚青年的年收入(万元)与购房数(套)的数据,如下表:
人名编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
年收入(万元) 15 5 7 16 14 3 4 6 20 8 4 12 5 6 4 30 3 7 4 6
购房数量(套) 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1
(Ⅰ)若当年收入12万元以上(含12万元)为高收入人群,年收入12万元以下为普通收入人群.根据上表完成下面2×2列联表(单位:人):
高收入 普通收入 合计
已购房
未购房
合计 20
(Ⅱ)根据题 (Ⅰ)中表格的数据计算,有多大的把握认为这个城市未婚青年购房与收入高低之间有关系?
参考数据:
①随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立性检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

假设小明家订了一份报纸,送报人可能在早上6:30至7:30之间把报纸送到小明家,小明爸爸离开家去工作的时间在早上7:00至8:00之间,问小明的爸爸在离开家前能得到报纸的概率是(  )

查看答案和解析>>

假设某人定了鲜奶,送奶工可能在早上6:30~7:30之间把鲜奶送到他家,他离开家去上学的时间是6:15~7:00之间,设送奶工到达他家的时间是x,他离开家的时间是y.用数对(x,y)表示可能的试验结果,则全部事件组成的集合Ω=(x,y)|6.5≤x≤7.5,6.25≤y≤7.
(1)用集合表示他能在离家前喝到鲜奶的事件A;
(2)他能在离家前喝到鲜奶的概率是多少?

查看答案和解析>>

假设某人定了鲜奶,送奶工可能在早上6:30~7:30之间把鲜奶送到他家,他离开家去上学的时间是6:15~7:00之间,设送奶工到达他家的时间是x,他离开家的时间是y.用数对(x,y)表示可能的试验结果,则全部事件组成的集合Ω=(x,y)|6.5≤x≤7.5,6.25≤y≤7.
(1)用集合表示他能在离家前喝到鲜奶的事件A;
(2)他能在离家前喝到鲜奶的概率是多少?

查看答案和解析>>

假设某人定了鲜奶,送奶工可能在早上6:30~7:30之间把鲜奶送到他家,他离开家去上学的时间是6:15~7:00之间,设送奶工到达他家的时间是x,他离开家的时间是y.用数对(x,y)表示可能的试验结果,则全部事件组成的集合Ω=(x,y)|6.5≤x≤7.5,6.25≤y≤7.
(1)用集合表示他能在离家前喝到鲜奶的事件A;
(2)他能在离家前喝到鲜奶的概率是多少?

查看答案和解析>>


同步练习册答案