题目列表(包括答案和解析)
(本小题满分12分)
设动点P到点A(-l,0)和B(1,0)的距离分别为d1和d2,
∠APB=2θ,且存在常数λ(0<λ<1=,使得d1d2 sin2θ=λ.
(1)证明:动点P的轨迹C为双曲线,并求出C的方程;
(2)过点B作直线交双曲线C的右支于M、N两
点,试确定λ的范围,使
·
=0,其中点
O为坐标原点.
![]()
(本小题满分12分)已知直线![]()
所经过的定点
恰好是椭圆
的一个焦点,且椭圆
上的点到点
的最大距离为3.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)已知圆
,直线
.试证明:当点
在椭圆
上运动时,直线
与圆
恒相交,并求直线
被圆
所截得弦长
的取值范围.
(Ⅲ)设直线
与椭圆交于
两点,若直线
交
轴于点
,且
,当
变化时,求
的值;
(本小题满分12分)在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程;
(2)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于
点A,B和C,D.证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值.
(本小题满分12分)
为了加快经济的发展,某市选择A、B两区作为龙头带动周边地区的发展,决定在A、B两区的周边修建城际快速通道,假设A、B两区相距
个单位距离,城际快速通道所在的曲线为E,使快速通道E上的点到两区的距离之和为4个单位距离.
![]()
(Ⅰ)以线段AB的中点O为原点建立如图所示的直角坐标系,求城际快速通道所在曲线E的方程;
(Ⅱ)若有一条斜率为
的笔直公路l与曲线E交于P,Q两点,同时在曲线E上建一个加油站M(横坐标为负值)满足
,求
面积的最大值.
一、选择题:BBCCD CCBDC
二、填空题:
11. - 12.
13.
; 14.
;
;
15..files/image062.gif)
三、解答题:
16.解(1)f(x)=asinωx-acosωx=2asin(ωx-)
由已知知周期T=-=π, 故a=1,ω=2;……………………6分
(2)由f(A)=2,即sin(
故== ===2.……12分
17.A、B、C分别表示事件甲、乙、丙面试合格,则.files/image169.gif)
(1)至少有一人合格的概率P=1-P(
)=
4分
(2)
可能取值0,1,2,3
5分
.files/image176.gif)
.files/image178.gif)
.files/image180.gif)
.files/image182.gif)
∴分布列为
.files/image106.gif)
0
1
2
3
P
.files/image185.gif)
.files/image185.gif)
.files/image187.gif)
.files/image188.gif)
9分
12分
18解:(1)连接
,交
于点
,连接
,
则在正方形
中,
又
,
,
故在△
中,.files/image210.gif)
又.files/image153.gif)
平面
,
平面
,所以,
平面
(2)
面
,四边形
为正方形,故以点
为原点,
为
轴,
为
轴,建立如图所示的空间直角坐标系,
则
,
,
,
面
,
是面
的一个法向量
设
是平面
的一个法向量,则
,且
,
,取
,得
,
此时,向量
和
的夹角就等于二面角
的平面角
二面角
的余弦值为
19.解:(1)依题意,
到
距离等于
到直线
的距离,曲线
是以原点为顶点,
为焦点的抛物线 (2分)
曲线
方程是
(4分)
(2)设圆心
,因为圆
过.files/image150.gif)
故设圆的方程
(7分)
令
得:.files/image290.gif)
设圆与
轴的两交点为
,则
(10分)
.files/image297.gif)
在抛物线
上,
(13分)
所以,当
运动时,弦长
为定值2 (14分)
20.方程tan2πx-4tanπx+=(tanπx-1)(tanπx-)=0
得tanπx=或tanπx=
(1)当n=1时,x∈[0,1),即πx∈[0,π)
由tanπx=,或tanπx=得πx=或πx=
故a1=+=;………………2分
当n=2时,x∈[1,2),则πx∈[π,2π)
由tanπx=或tanπx=,得πx=或πx=
故a1=+=………………4分
当x∈[n-1,n)时,πx∈[(n-1)π,nπ)
由tanπx=,或tanπx=得πx=+(n-1)π或πx=+(n-1)π
得x=+(n-1)或x=+(n-1),
故an=+(n-1)++(n-1)=2n-………6分
(2)由(1)得bn+1≥a=2bn-……………………8分
即bn+1-≥a=2(bn-)≥22(bn-1-)≥…≥2n(b1-)=2n-1>0……10分
则≤,即≤
++…+≤1++…+=2-<2.……12分
21.解:(1)函数f(x)=ax3+bx2+cx+d是奇函数,则b=d=0,
∴f /(x)=3ax2+c,则.files/image309.gif)
故f(x)=-x3+x;………………………………4分
(2)∵f /(x)=-3x2+1=-3(x+)(x-)
∴f(x)在(-∞,-),(,+∞)上是增函数,在[-,]上是减函数,
由f(x)=0解得x=±1,x=0,
如图所示,
当-1<m<0时,f(x)max=f(-1)=0;
当0≤m<时,f(x)max=f(m)=-m3+m,
当m≥时,f(x)max=f()=.
故f(x)max=.………………9分
(3)g(x)=(-x),令y=2k-x,则x、y∈R+,且2k=x+y≥2,
又令t=xy,则0<t≤k2,
故函数F(x)=g(x)?g(2k-x)=(-x)(-y)=+xy-
=+xy-=+t+2,t∈(0,k2]
当1-4k2≤0时,F(x)无最小值,不合
当1-4k2>0时,F(x)在(0,]上递减,在[,+∞)上递增,
且F(k2)=(-k)2,∴要F(k2)≥(-k)2恒成立,
必须
,
故实数k的取值范围是(0,)].………………14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com