[解析]A中则. 查看更多

 

题目列表(包括答案和解析)

中,边的高为,若,则

(A)       (B)      (C)      (D) 

【解析】如图,在直角三角形中,,则,所以,所以,即,选D.

 

查看答案和解析>>

△ABC中,AB边的高为CD,若a·b=0,|a|=1,|b|=2,则

(A)   (B)     (C)    (D)

【解析】在直角三角形中,,则,所以,所以,即,选D.

 

查看答案和解析>>

设函数

(I)求的单调区间;

(II)当0<a<2时,求函数在区间上的最小值.

【解析】第一问定义域为真数大于零,得到.                            

,则,所以,得到结论。

第二问中, ().

.                          

因为0<a<2,所以.令 可得

对参数讨论的得到最值。

所以函数上为减函数,在上为增函数.

(I)定义域为.           ………………………1分

.                            

,则,所以.  ……………………3分          

因为定义域为,所以.                            

,则,所以

因为定义域为,所以.          ………………………5分

所以函数的单调递增区间为

单调递减区间为.                         ………………………7分

(II) ().

.                          

因为0<a<2,所以.令 可得.…………9分

所以函数上为减函数,在上为增函数.

①当,即时,            

在区间上,上为减函数,在上为增函数.

所以.         ………………………10分  

②当,即时,在区间上为减函数.

所以.               

综上所述,当时,

时,

 

查看答案和解析>>

设△的内角所对边的长分别为,且有

(Ⅰ)求角A的大小;

(Ⅱ)若的中点,求的长。

 【解析】(1)由题,,则,故,即.

(2)因,因的中点,故,则,所以

 

查看答案和解析>>

在△ABC中,为三个内角为三条边,

(I)判断△ABC的形状;

(II)若,求的取值范围.

【解析】本题主要考查正余弦定理及向量运算

第一问利用正弦定理可知,边化为角得到

所以得到B=2C,然后利用内角和定理得到三角形的形状。

第二问中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴;∴B+2C,则A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>


同步练习册答案