题目列表(包括答案和解析)
| A、6 | B、8 | C、1或9 | D、10 |
已知椭圆
的离心率为
,并且直线
是抛物线
的一条切线。
(1)求椭圆的方程
(2)过点
的动直线
交椭圆
于
、
两点,试问:在直角坐标平面上是否存在一个定点
,使得以
为直径的圆恒过点
?若存在求出
的坐标;若不存在,说明理由。
已知椭圆
的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线
是抛物线
的一条切线.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点
的动直线L交椭圆C于 A.B两点.问:是否存在一个定点T,使得以AB为直径的圆恒过点T ? 若存在,求点T坐标;若不存在,说明理由.
若抛物线y2=2px(p>0)上一点P到焦点和抛物线的对称轴的距离分别为10和6,则p的值为( )
(A)2 (B)18
(C)2或18 (D)4或16
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com