题目列表(包括答案和解析)
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| a2 |
| y2 |
| b2 |
| x2 |
| m2 |
| y2 |
| n2 |
(本题满分12分)阅读下列材料,解决数学问题.圆锥曲线具有非常漂亮的光学性质,被人们广泛地应用于各种设计之中,比如椭圆镜面用来制作电影放映机的聚光灯,抛物面用来制作探照灯等,它们的截面分别是椭圆和抛物线.双曲线也具有非常好的光学性质,从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线是发散的,它们好像是从另一个焦点射出的一样,如图(1)所示.反比例函数
的图像是以直线
为轴,以坐标轴为渐近线的等轴双曲线,记作C.
(Ⅰ)求曲线C的离心率及焦点坐标;
(Ⅱ)如图(2),从曲线C的焦点F处发出的光线经双曲线反射后得到的反射光线与入射光线垂直,求入射光线的方程.
(1)
(2) ![]()
给出如下四个命题:
①方程x2+y2-2x+1=0表示的图形是圆;
②若椭圆的离心率为
,则两个焦点与短轴的两个端点构成正方形;
③抛物线x=2y2的焦点坐标为
;
④双曲线
-
=1的渐近线方程为y=±
x.
其中正确命题的序号是________.
下列四个关于圆锥曲线的命题:
①已知M(-2,0)、N(2,0),|PM|+|PN|=3,则动点P的轨迹是一条线段;
②从双曲线的一个焦点到一条渐近线的距离等于它的虚半轴长;
③双曲线
与椭圆
有共同的准线;
④关于x的方程x2-mx+1=0(m>2)的两根可分别作为椭圆和双曲线的离心率.
其中正确的命题是 .(填上你认为正确的所有命题序号)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com