解:由可以得到 查看更多

 

题目列表(包括答案和解析)

如图1:等边可以看作由等边绕顶点经过旋转相似变换得到.但是我们注意到图形中的的关系,上述变换也可以理解为图形是由绕顶点旋转形成的.于是我们得到一个结论:如果两个正三角形存在着公共顶点,则该图形可以看成是由一个三角形绕着该顶点旋转形成的.

① 利用上述结论解决问题:如图2,中,都是等边三角形,求四边形的面积;
② 图3中, ,仿照上述结论,推广出符合图3的结论.(写出结论即可)

查看答案和解析>>

如图1:等边可以看作由等边绕顶点经过旋转相似变换得到.但是我们注意到图形中的的关系,上述变换也可以理解为图形是由绕顶点旋转形成的.于是我们得到一个结论:如果两个正三角形存在着公共顶点,则该图形可以看成是由一个三角形绕着该顶点旋转形成的.

① 利用上述结论解决问题:如图2,中,都是等边三角形,求四边形的面积;

② 图3中, ,仿照上述结论,推广出符合图3的结论.(写出结论即可)

 

 

查看答案和解析>>

如图1:等边可以看作由等边绕顶点经过旋转相似变换得到.但是我们注意到图形中的的关系,上述变换也可以理解为图形是由绕顶点旋转形成的.于是我们得到一个结论:如果两个正三角形存在着公共顶点,则该图形可以看成是由一个三角形绕着该顶点旋转形成的.

① 利用上述结论解决问题:如图2,中,都是等边三角形,求四边形的面积;
② 图3中, ,仿照上述结论,推广出符合图3的结论.(写出结论即可)

查看答案和解析>>

为了更好地了解鲸的生活习性,某动物保护组织在受伤的鲸身上安装了电子监测装置,从海岸放归点A处(如图所示)把它放归大海,并沿海岸线由西到东不停地对鲸进行了长达40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(没鲸沿海面游动),然后又在观测站B处对鲸进行生活习性的详细观测.已知AB=15km,观测站B的观测半径为5km.

(1)据表中信息:①计算出鲸沿海岸线方向运动的速度,②度写出a、近似满足的关系式并画出鲸的运动路线草图;

(2)若鲸继续以(1)②中运行路线运动,试预测,该鲸经过多长时间(从放归时计是时),可进入前方观测站B的观测范围?并求出可持续观测的时间.(注精确到1分钟)

查看答案和解析>>

为了能更好地了解鲸的生活习性,某动物研究所在受伤的鲸身上安装了电子监测装置.从海岸放归点A处(如图所示)把它放归大海,并沿海岸线由西向东不停地对鲸进行了40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(设鲸沿海面游动).然后又在观测站B处对鲸进行生活习性的详细观测.已知AB=15km,观测站B的观测半径为5km.


(Ⅰ)根据表中数据:①计算鲸沿海岸线方向运动的速度,②写出a、b满足的关系式并画出鲸的运动路线简图;
(Ⅱ)若鲸继续以(Ⅰ)中②的运动路线运动,则鲸大约经过多少分钟(从放归时计时),可进入前方观测站B的观测范围(精确到1分钟)?

查看答案和解析>>


同步练习册答案