设 则 g`(x)=3x2-3ax 令 g`(x)=0.得x=0.x=a. 当0<x<a时.g`(x)<0.g(x)为减函数. 当x>a时g`(x)>0.g(x)为增函数.所以x=a是g(x)的最小值点. 查看更多

 

题目列表(包括答案和解析)

函数f(x)=
2x
x2+1
的定义域为[-
1
2
1
2
]

(1)求函数f(x)的值域;
(2)设函数g(x)=x3-3ax+
7
8
(-
1
2
≤x≤
1
2
,且a≥
1
4
)
.若对于任意x1[-
1
2
1
2
]
,总存在x2[-
1
2
1
2
]
,使得g(x2)=f(x1)成立,求a的取值范围.

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>

设函数f(x)=
2x
x2+1
g(x)=x3-3ax+
7
8
,若对于任意x1[-
1
2
1
2
]
,总存在x2[-
1
2
1
2
]
,使得g(x2)=f(x1)成立.则正整数a的最小值为
 

查看答案和解析>>

设f(x)=3ax-2a+1,若存在x0∈(-1,1),使f(x0)=0,则实数a的取值范围是(  )
A、-1<a<
1
5
B、a<-1
C、a<-1或a>
1
5
D、a>
1
5

查看答案和解析>>

(2006•广州模拟)设函数g(x)=
ex,x≤0
lnx,x>0
则g(-1)=(  )

查看答案和解析>>


同步练习册答案