题目列表(包括答案和解析)
以
为焦点且与直线
有公共点的椭圆中,离心率最大的椭圆方程是 。
以
为焦点且与直线
有公共点的椭圆中,离心率最大的椭圆方程是_________
| 4 |
| 5 |
| x2 |
| a2 |
| y2 |
| b2 |
已知椭圆
,抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点
,每条曲线上取两个点,将其坐标记录于表中:
|
|
|
|
|
|
|
|
|
|
|
|
(1)求
,
的标准方程;
(2)设斜率不为0的动直线
与
有且只有一个公共点
,且与
的准线交于
,试探究:在坐标平面内是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出
点的坐标,若不存在,请说明理由.
已知椭圆![]()
的离心率为
,直线
与以原点为圆心,以椭圆
的短半轴长为半径的圆
相切.
(1)求椭圆
的方程;
(2)抛物线
与椭圆
有公共焦点,设
与
轴交于点
,不同的两点
、
在
上(
、
与
不重合),且满足
,求
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com