② ?>0是.的夹角为锐角的充要条件, 查看更多

 

题目列表(包括答案和解析)

①函数的零点所在的区间是(2,3);②曲线y=4x-x3在点(-1,-3)处的切线方程是y=x-2;③将函数y=2x+1的图象按向量a=(1,-1)平移后得到函数y=2x+1的图象;④函数y=的定义域是(-,-1)∪(1,)⑤>0是的夹角为锐角的充要条件;以上命题正确的是    .(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

设向量的夹角为α,则cosα<0是的夹角α为钝角的( )
A.充要条件
B.充分非必要条件
C.必要非充分条件
D.既非充分又非必要

查看答案和解析>>

是两个非零向量,>0是的夹角<>为锐角的( )条件
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分又不必要条件

查看答案和解析>>

数学公式数学公式是两个非零向量,数学公式数学公式>0是数学公式数学公式的夹角<数学公式>为锐角的______条件


  1. A.
    充分而不必要条件
  2. B.
    必要而不充分条件
  3. C.
    充要条件
  4. D.
    既不充分又不必要条件

查看答案和解析>>

给出下列命题

    ① 非零向量满足||=||=|-|,则+的夹角为30°;

    ② ·>0是的夹角为锐角的充要条件;

    ③ 将函数y=|x-1|的图象按向量=(-1,0)平移,得到的图像对应的函数为y=|x|;

    ④若()·()=0,则△ABC为等腰三角形

    以上命题正确的是                   。(注:把你认为正确的命题的序号都填上)

查看答案和解析>>

1-5  ACADC。 6-10   ACABB    11-12 DA

13. 28    14.      15. -4n+5 ;       16. ①③④

17.(1),即

      

       ,∴.                                  5分

  

18.解法一:证明:连结OC,

.   ----------------------------------------------------------------------------------1分

,

       ∴ .                ------------------------------------------------------2分

中,     

   ------------------3分

             

.  ----------------------------4分

       (II)过O作,连结AE,

       ,

∴AE在平面BCD上的射影为OE.

.  -----------------------------------------7分

中,,,,   

       ∴

       ∴二面角A-BC-D的大小为.   ---------------------------------------------------8分

       (III)解:设点O到平面ACD的距离为

 ∴

中,

            

,∴

         ∴点O到平面ACD的距离为.--------------------------------12分

        解法二:(I)同解法一.

       (II)解:以O为原点,如图建立空间直角坐标系,

则     

      

.  ------------6分

设平面ABC的法向量

夹角为,则

∴二面角A-BC-D的大小为. --------------------8分

       (III)解:设平面ACD的法向量为,又

       .   -----------------------------------11分

夹角为

   则     -       设O 到平面ACD的距离为h,

,∴O到平面ACD的距离为.  ---------------------12分

 

19.(Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且

故取出的4个球均为黑球的概率为.…….6分

(Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.由于事件互斥,

故取出的4个球中恰有1个红球的概率为...12分

20. 解:(Ⅰ)由已知,当时,   ……………… 2分

,得,∴p=…………….4分

.……………… 6分

(Ⅱ)由(1)得,.       ……………… 7分

2  ;              ①

.    ②  ………9分

②-①得,

.       ………………12分

21.解(I)

(II)

时,是减函数,则恒成立,得

 

22.解(I)设

                   

(3分)

 

 (Ⅱ)(1)当直线的斜率不存在时,方程为

      

       …………(4分)

  (2)当直线的斜率存在时,设直线的方程为

       设

      ,得

       …………(6分)

      

      

…………………8分

                                      ………………….9分

注意也可用..........12分

 

 

 

 

 

 

 

 

 

 


同步练习册答案