18.解:,解得=5,d=3 ∴=3n+2,==3×+2, 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=cos(2x+)+sinx·cosx

⑴ 求函数f(x)的单调减区间;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一问中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二问中,∵xÎ[0, ],∴2x-Î[-,],

∴当2x-=-,即x=0时,f(x)min=-,

当2x-, 即x=时,f(x)max=1

第三问中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用构造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的减区间是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴当2x-=-,即x=0时,f(x)min=-,        ……………………8分

当2x-, 即x=时,f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

已知,设是方程的两个根,不等式对任意实数恒成立;函数有两个不同的零点.求使“P且Q”为真命题的实数的取值范围.

【解析】本试题主要考查了命题和函数零点的运用。由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3. 当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

可得到要使“P∧Q”为真命题,只需P真Q真即可。

解:由题设x1+x2=a,x1x2=-2,

∴|x1-x2|=.

当a∈[1,2]时,的最小值为3.

要使|m-5|≤|x1-x2|对任意实数a∈[1,2]恒成立,只须|m-5|≤3,即2≤m≤8.

由已知,得f(x)=3x2+2mx+m+=0的判别式

Δ=4m2-12(m+)=4m2-12m-16>0,

得m<-1或m>4.

综上,要使“P∧Q”为真命题,只需P真Q真,即

解得实数m的取值范围是(4,8]

 

查看答案和解析>>

在△ABC中,a、b、c分别是角A、B、C的对边,cosB=.

⑴ 若cosA=-,求cosC的值;  ⑵ 若AC=,BC=5,求△ABC的面积.

【解析】第一问中sinB=, sinA=

cosC=cos(180°-A-B)=-cos(A+B)                =sinA.sinB-cosA·cosB

×-(-

第二问中,由-2AB×BC×cosB得 10=+25-8AB

解得AB=5或AB=3综合得△ABC的面积为

解:⑴ sinB=, sinA=,………………2分

∴cosC=cos(180°-A-B)=-cos(A+B)                  ……………………3分

=sinA.sinB-cosA·cosB                            ……………………4分

×-(-                   ……………………6分

⑵ 由-2AB×BC×cosB得 10=+25-8AB   ………………7分

解得AB=5或AB=3,                               ……………………9分

若AB=5,则S△ABCAB×BC×sinB=×5×5×    ………………10分

若AB=3,则S△ABCAB×BC×sinB=×5×3×……………………11分

综合得△ABC的面积为

 

查看答案和解析>>

已知集合A={1.3. },B={1,m} ,AB=A, 则m=

A、0或    B、0或3      C、1或       D、1或3

【解析】因为,所以,所以.若,则,满足.若,解得.若,则,满足.若显然不成立,综上,选B.

 

查看答案和解析>>

不定方程2(xy)=xy+7的正整数解得个数是(   )
A、1       B、2       C、3       D、4

查看答案和解析>>


同步练习册答案