题目列表(包括答案和解析)
要证
,只需证
,即需
,即需证
,即证35>11,因为35>11显然成立,所以原不等式成立。以上证明运用了
A.比较法 B.综合法 C.分析法 D.反证法
| 7 |
| 3 |
| 6 |
| 2 |
| 7 |
| 3 |
| 6 |
| 2 |
| 7 |
| 2 |
| 6 |
| 3 |
| 7 |
| 2 |
| 6 |
| 3 |
| 7 |
| 2 |
| 6 |
| 3 |
| 7 |
| 2 |
| 6 |
| 3 |
| 14 |
| 18 |
| 14 |
| 18 |
| 7 |
| 2 |
| 6 |
| 3 |
当P为何值时,对任意实数x,不等式-9<
≤6恒 成立.
将原不等式等价转化为一元二次不等式组.
已知函数
其中
为自然对数的底数,
.(Ⅰ)设
,求函数
的最值;(Ⅱ)若对于任意的
,都有
成立,求
的取值范围.
【解析】第一问中,当
时,
,
.结合表格和导数的知识判定单调性和极值,进而得到最值。
第二问中,∵
,
,
∴原不等式等价于:
,
即
, 亦即![]()
分离参数的思想求解参数的范围
解:(Ⅰ)当
时,
,
.
当
在
上变化时,
,
的变化情况如下表:
|
|
|
|
|
|
|
|
|
|
- |
|
+ |
|
|
|
|
|
|
|
1/e |
∴
时,
,
.
(Ⅱ)∵
,
,
∴原不等式等价于:
,
即
, 亦即
.
∴对于任意的
,原不等式恒成立,等价于
对
恒成立,
∵对于任意的
时,
(当且仅当
时取等号).
∴只需
,即
,解之得
或
.
因此,
的取值范围是![]()
A、
| ||||
| B、a2>b2 | ||||
C、
| ||||
| D、a|c|>b|c| |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com