原不等式成立. --------8分(Ⅲ)同解法一. 查看更多

 

题目列表(包括答案和解析)

要证,只需证,即需,即需证,即证35>11,因为35>11显然成立,所以原不等式成立。以上证明运用了

A.比较法           B.综合法           C.分析法           D.反证法

 

查看答案和解析>>

某同学在证明命题“
7
-
3
6
-
2
”时作了如下分析,请你补充完整.
要证明
7
-
3
6
-
2
,只需证明
7
+
2
6
+
3
7
+
2
6
+
3
,只需证明
(
7
+
2
)2<(
6
+
3
)2
(
7
+
2
)2<(
6
+
3
)2

展开得9+2
14
<9+2
18
,即
14
18
,只需证明14<18,
因为14<18显然成立
因为14<18显然成立

所以原不等式:
7
+
2
6
+
3
成立.

查看答案和解析>>

P为何值时,对任意实数x,不等式-9<≤6恒   成立.

将原不等式等价转化为一元二次不等式组.

查看答案和解析>>

已知函数其中为自然对数的底数, .(Ⅰ)设,求函数的最值;(Ⅱ)若对于任意的,都有成立,求的取值范围.

【解析】第一问中,当时,.结合表格和导数的知识判定单调性和极值,进而得到最值。

第二问中,∵,      

∴原不等式等价于:,

, 亦即

分离参数的思想求解参数的范围

解:(Ⅰ)当时,

上变化时,的变化情况如下表:

 

 

1/e

时,

(Ⅱ)∵,      

∴原不等式等价于:,

, 亦即

∴对于任意的,原不等式恒成立,等价于恒成立,

∵对于任意的时, (当且仅当时取等号).

∴只需,即,解之得.

因此,的取值范围是

 

查看答案和解析>>

若a、b、c∈R,a>b,则下列不等式成立的是(  )
A、
1
a
1
b
B、a2>b2
C、
a
c2+1
b
c2+1
D、a|c|>b|c|

查看答案和解析>>


同步练习册答案