二选择题: 查看更多

 

题目列表(包括答案和解析)

(本大题有两题,请同学们选择你喜欢且拿手一题解答)
【Ⅰ】如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动.设动点运动时间为t秒.
(1)求AD的长;
(2)当△PDC的面积为15平方厘米时,求t的值;
(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D时,点M也停止运动.是否存在t,使得S△PMD=
112
S△ABC?若存在,请求出t的值;若不存在,请说明理由.
精英家教网
【Ⅱ】我校工会于“三•八”妇女节期间组织女职工到国家级风景区“文成铜铃山”观光旅游.下面是领队与旅行社导游收费标准的一段对话:
【领队】组团去“文成铜铃山”旅游每人收费是多少?
【导游】如果人数不超过30人,人均旅游费用为360元.
【领队】超过30人怎样优惠呢?
【导游】如果超过30人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于300元.
我校按旅行社的收费标准组团浏览“文成铜铃山”结束后,共支付给旅行社12400元.设我校这次参加旅游的共有x人.
请你根据上述信息,回答下列问题:
(1)我校参加旅游的人数x的取值范围是
 

(2)我校参加旅游的人每人实际应收费
 
元(用含x的代数式表示);
(3)求我校这次到“文成铜铃山”观光旅游的女职工共有多少人?

查看答案和解析>>

把下列各式因式分解:(本大题共2小题,每题4分,计8分)

  ②

 

查看答案和解析>>

(本小题满分12分)
已知二次函数图象的顶点坐标为M(1,0),直线与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在轴上.

【小题1】(1)求m的值及这个二次函数的解析式;
【小题2】(2)若P(,0) 是轴上的一个动点,过P作轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①当0<< 3时,求线段DE的最大值;
②若直线AB与抛物线的对称轴交点为N,
问是否存在一点P,使以M、N、D、E
为顶点的四边形是平行四边形?若存在,
请求出此时P点的坐标;若不存在,请
说明理由.

查看答案和解析>>

(本大题12分)某镇组织10辆汽车装运完ABC三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:
湘 莲 品 种
A
B
C
每辆汽车运载量(吨)
12
10
8
每吨湘莲获利(万元)
3
4
2
(1)设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求yx之间的函数关系式;
(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)在(2)的方案中,若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.

查看答案和解析>>

(本大题12分)某镇组织10辆汽车装运完ABC三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:

(1)设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求yx之间的函数关系式;
(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)在(2)的方案中,若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.

查看答案和解析>>


同步练习册答案