题目列表(包括答案和解析)
(本小题满分10分)
元旦期间,商场中原价为 100元的某种商品经过两次连续降价后以每件81元出售,设这种商品每次降价的百分率相同,求这个百分率.
(本小题满分10分)
已知直线y=
x+4
与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.
![]()
1.(1)试确定直线BC的解析式.
2.(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与 t 的函数关系式,并写出自变量的取值范围.
3.(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.
(本小题满分10分)
某工厂计划为震区生产
两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套
型桌椅(一桌两椅)需木料
,一套
型桌椅(一桌三椅)需木料
,工厂现有库存木料
.
1.(1)有多少种生产方案?
2.(2)现要把生产的全部桌椅运往震区,已知每套
型桌椅的生产成本为100元,运费2元;每套
型桌椅的生产成本为120元,运费4元,求总费用
(元)与生产
型桌椅
(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用
生产成本
运费)
3.(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.
(本小题满分10分)
某商场试销一种成本为每件60元的服装,经试销发现,销售量
(件)与销售单价
(元)符合一次函数
,且
时,
;
时,
.
(1)求一次函数
的表达式;
(2)若该商场获得利润为
元,试写出利润
与销售单价
之间的关系式;
(3)若该商场想获得500元的利润且尽可能地扩大销售量,则销售单价应定为多少元?
(4)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
1. (本小题满分10分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
![]()
1.(1)求梯形ABCD的面积;
2.(2)当P点离开D点几秒后,PQ//AB;
3.(3)当P、Q、C三点构成直角三角形时,求点P从点D运动的时间?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com