题目列表(包括答案和解析)
在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.
小华同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样就不需要求△ABC的高,而借用网格就能计算出它的面积.(本题8分)
⑴ 请你将△ABC的面积直接填写在横线上.
思维拓展:
⑵ 我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为
、
、
(
>0),请利用图②的正方形网格(每个小正方形的边长为
)画出相应的△ABC,并求出它的面积.
探索创新:
⑶ 若△ABC三边的长分别为
、
、
(
>0,
>0,且
),试运用构图法求出这个三角形的面积.![]()
在△ABC中,AB、BC、AC三边的长分别为
、
、
,求这个三角形的面积.
小华同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样就不需要求△ABC的高,而借用网格就能计算出它的面积.(本题8分)
⑴ 请你将△ABC的面积直接填写在横线上.
思维拓展:
⑵ 我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为
、
、
(
>0),请利用图②的正方形网格(每个小正方形的边长为
)画出相应的△ABC,并求出它的面积.
探索创新:
⑶ 若△ABC三边的长分别为
、
、
(
>0,
>0,且
),试运用构图法求出这个三角形的面积.
![]()
(本题10分)如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC、AB分别交于点D、E,且∠CBD=∠A.
试判断直线BD与⊙O的位置关系,并证明你的结论.
![]()
(本题7分)如图,等腰直角△ABC中,∠ABC=90°,点D在AC上, 将△ABD绕顶点B沿顺时针方向旋90°后得到△CBE.
![]()
⑴求∠DCE的度数;
⑵当AB=4,AD:DC=1: 3时,求DE的长.
(本题满分10分)
如图,已知在△ABC中,点D、E分别在AB、AC上,且AD·AB=AE·AC,CD与BE相交于点O.
(1)求证:△AEB∽△ADC
(2)求证:![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com