17.如图.已知AB是⊙O的直经.AC切⊙O于A点.且AB = AC.连结OC交⊙O于D点.连BD交AC于E.过D点作DF⊥AC于F点.连结OE交DF于P点.下列结论:①AF = CF,②DP = PF,③,④EF┱DE = AD┱AC. 其中正确的结论是( ) A.①② B.①③ C.②③ D.②④ 查看更多

 

题目列表(包括答案和解析)

已知:如图,⊙O与⊙O1内切于点A,AO是⊙O1的直径,⊙O的弦AC交⊙O1于点B,弦DF经过点B且精英家教网垂直于OC,垂足为点E.
(1)求证:DF与⊙O1相切;
(2)求证:2AB2=AD•AF;
(3)若AB=2
5
,cos∠DBA=
5
5
,求AF和AD的长.

查看答案和解析>>

已知:如图,在直角坐标系中,以点M(1,0)为圆心、直径AC为2
2
的圆与y轴交于A、D两点.
(1)求点A的坐标;
(2)设过点A的直线y=x+b与x轴交于点B.探究:直线AB是否⊙M的切线并对你的结论加以证明;
(3)在(2)的前提下,连接BC,记△ABC的外接圆面积为S1、⊙M面积为S2,若
S1
S2
=
h
4
,抛物线y=ax2+bx+c精英家教网经过B、M两点,且它的顶点到x轴的距离为h.求这条抛物线的解析式.

查看答案和解析>>

已知,如图,一条抛物线的对称轴是直线x=数学公式,经过点(1,-3)、(3,-2),与x轴交于A、B两点,与y轴交于点C.D、E分别是边AC、BC上的两个动点(不与A、B重合),且保持DE∥AB.以DE为边向上作正方形DEFG.
(1)求二次函数的解析式.
(2)试判断△ABC的形状,并说明理由.
(3)当正方形的边GF在AB边上时,求正方形DEFG的边长.
(4)当D、E在运动过程中,正方形DEFG的边长能否与△ABC的外接圆相切?若相切,求出DE的长;若不能,则说明理由.

查看答案和解析>>

已知,如图,一条抛物线的对称轴是直线x=,经过点(1,-3)、(3,-2),与x轴交于A、B两点,与y轴交于点C.D、E分别是边AC、BC上的两个动点(不与A、B重合),且保持DE∥AB.以DE为边向上作正方形DEFG.
(1)求二次函数的解析式.
(2)试判断△ABC的形状,并说明理由.
(3)当正方形的边GF在AB边上时,求正方形DEFG的边长.
(4)当D、E在运动过程中,正方形DEFG的边长能否与△ABC的外接圆相切?若相切,求出DE的长;若不能,则说明理由.

查看答案和解析>>

已知,如图,一条抛物线的对称轴是直线x=,经过点(1,-3)、(3,-2),与x轴交于A、B两点,与y轴交于点C.D、E分别是边AC、BC上的两个动点(不与A、B重合),且保持DE∥AB.以DE为边向上作正方形DEFG.
(1)求二次函数的解析式.
(2)试判断△ABC的形状,并说明理由.
(3)当正方形的边GF在AB边上时,求正方形DEFG的边长.
(4)当D、E在运动过程中,正方形DEFG的边长能否与△ABC的外接圆相切?若相切,求出DE的长;若不能,则说明理由.

查看答案和解析>>


同步练习册答案