24.如图①.有两个形状完全相同的直角三角形ABC和EFG叠放在一起.已知AC=8cm.BC=6cm.∠C=90°.EG=4cm.∠EGF=90°.O 是△EFG斜边上的中点.如图②.若整个△EFG从图①的位置出发.以1cm/s 的速度沿射线AB方向平移.在△EFG 平移的同时.点P从△EFG的顶点G出发.以1cm/s 的速度在直角边GF上向点F运动.当点P到达点F时.点P停止运动.△EFG也随之停止平移.设运动时间为x(s).FG的延长线交 AC于H.四边形OAHP的面积为y(cm2)(不考虑点P与G.F重合的情况).(1)当x为何值时.OP∥AC ?(2)求y与x 之间的函数关系式.并确定自变量x的取值范围.(3)是否存在某一时刻.使四边形OAHP面积与△ABC面积的比为13∶24?若存在.求出x的值,若不存在.说明理由.(参考数据:1142 =12996.1152 =13225.1162 =13456 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=16 cm, OC=8cm,现有两动点PQ分别从OC同时出发,P在线段OA上沿OA方向以每秒2 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒.

(1)用含t的式子表示△OPQ的面积S

(2)判断四边形OPBQ的面积是否是一个定值,如果是,请求出这个定值;如果不是,请说明理由;

(3)当△OPQ∽△ABP时,抛物线yx2+bx+c经过B、P两点,求抛物线的解析式;

(4)在(3)的条件下,过线段BP上一动点M轴的平

行线交抛物线于N,求线段MN的最大值.

 

 

 

 

查看答案和解析>>

(本小题满分12分)

如图,⊙O的半径为6cm,射线PM与⊙O相切于点C,且PC=16cm.

(1)请你作出图中线段PC的垂直平分线EF,垂足为Q,并求出QO的长;

(2)在(1)的基础上画出射线QO,分别交⊙O于点A、B,将直线EF沿射线QM方向以5cm/s的速度平移(平移过程中直线EF始终保持与PM垂直),设平移时间为t.当t为何值时,直线EF与⊙O相切?

(3)直接写出t为何值时,直线EF与⊙O无公共点?t为何值时,

·

 
直线EF与⊙O有两个公共点?

 

查看答案和解析>>

(本小题满分12分)
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA="16" cm, OC=8cm,现有两动点PQ分别从OC同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.
(1)用含t的式子表示△OPQ的面积S
(2)判断四边形OPBQ的面积是否是一个定值,如果是,请求出这个定值;如果不是,请说明理由;
(3)当△OPQ∽△ABP时,抛物线yx2+bx+c经过B、P两点,求抛物线的解析式;
(4)在(3)的条件下,过线段BP上一动点M轴的平
行线交抛物线于N,求线段MN的最大值.

查看答案和解析>>

(本小题满分12分)
如图,⊙O的半径为6cm,射线PM与⊙O相切于点C,且PC=16cm.

(1)请你作出图中线段PC的垂直平分线EF,垂足为Q,并求出QO的长;
(2)在(1)的基础上画出射线QO,分别交⊙O于点A、B,将直线EF沿射线QM方向以5cm/s 的速度平移(平移过程中直线EF始终保持与PM垂直),设平移时间为t.当t为何值时,直线EF与⊙O相切?
(3)直接写出t为何值时,直线EF与⊙O无公共点?t为何值时,

·

 
直线EF与⊙O有两个公共点?

查看答案和解析>>

(本小题满分12分)
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA="16" cm, OC=8cm,现有两动点PQ分别从OC同时出发,P在线段OA上沿OA方向以每秒2cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动.设运动时间为t秒.
(1)用含t的式子表示△OPQ的面积S
(2)判断四边形OPBQ的面积是否是一个定值,如果是,请求出这个定值;如果不是,请说明理由;
(3)当△OPQ∽△ABP时,抛物线yx2+bx+c经过B、P两点,求抛物线的解析式;
(4)在(3)的条件下,过线段BP上一动点M轴的平
行线交抛物线于N,求线段MN的最大值.

查看答案和解析>>


同步练习册答案