25. 有一根直尺的短边长2cm.长边长10cm.还有一块锐角为45°的直角三角形纸板.其中直角三角形纸板的斜边长为12cm.按图14―1的方式将直尺的短边DE放置在与直角三角形纸板的斜边AB上.且点D与点A重合.若直尺沿射线AB方向平行移动.如图14―2.设平移的长度为x(cm).直尺和三角形纸板的重叠部分的面积为S cm 2).(1)当x=0时.S= ,当x = 10时.S = ,(2)当0<x≤4时.如图14―2.求S与x的函数关系式,(3)当6<x<10时.求S与x的函数关系式,(4)请你作出推测:当x为何值时.阴影部分的面积最大?并写出最大值. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)已知:抛物线的对称轴为轴交于两点,与轴交于点其中

(1)求这条抛物线的函数表达式.
(2)已知在对称轴上存在一点P,使得的周长最小.请求出点P的坐标.
(3)若点是线段上的一个动点(不与点O、点C重合).过点D轴于点连接.设的长为的面积为.求之间的函数关系式.试说明是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.

查看答案和解析>>

(本小题满分12分)你还记得图形的旋转吗?如图,P是正方形ABCD内一点,
PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,得△CBP.

⑴ 求证:△PBP是等腰直角三角形;
⑵ 猜想△PCP的形状,并说明理由.

查看答案和解析>>

(本小题满分12分)你还记得图形的旋转吗?如图,P是正方形ABCD内一点,

PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,得△CBP.

⑴ 求证:△PBP是等腰直角三角形;

⑵ 猜想△PCP的形状,并说明理由.

 

查看答案和解析>>

(本小题满分12分)你还记得图形的旋转吗?如图,P是正方形ABCD内一点,

PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,得△CBP.

⑴ 求证:△PBP是等腰直角三角形;

⑵ 猜想△PCP的形状,并说明理由.

 

查看答案和解析>>

(本小题满分12分)

如图,⊙O的半径为6cm,射线PM与⊙O相切于点C,且PC=16cm.

(1)请你作出图中线段PC的垂直平分线EF,垂足为Q,并求出QO的长;

(2)在(1)的基础上画出射线QO,分别交⊙O于点A、B,将直线EF沿射线QM方向以5cm/s的速度平移(平移过程中直线EF始终保持与PM垂直),设平移时间为t.当t为何值时,直线EF与⊙O相切?

(3)直接写出t为何值时,直线EF与⊙O无公共点?t为何值时,

·

 
直线EF与⊙O有两个公共点?

 

查看答案和解析>>


同步练习册答案