题目列表(包括答案和解析)
某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:
定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.
结论:在探讨过程中,有三位同学得出如下结果:
甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、____个、_____个大小不同的内接正方形.
乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.
丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.
任务:(1)填充甲同学结论中的数据;
(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;
(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明。
(如图,设锐角△ABC的三条边分别为
不妨设
,三条边上的对应高分别为
,内接正方形的边长分别为
.若你对本小题证明有困难,可直接用“
”这个结论,但在证明正确的情况下扣1分).
![]()
某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:
定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.
结论:在探讨过程中,有三位同学得出如下结果:
甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、____个、_____个大小不同的内接正方形.
乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.
丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.
任务:(1)填充甲同学结论中的数据;
(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;
(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明。
(如图,设锐角△ABC的三条边分别为
不妨设
,三条边上的对应高分别为
,内接正方形的边长分别为
.若你对本小题证明有困难,可直接用“
”这个结论,但在证明正确的情况下扣1分).
![]()
如图,在△ABC中,∠BAC与∠ABC的平分线AE、BE相交于点E,延长AE交△ABC外接圆于D,连结BD、CD、CE,且∠BDA = 60o.
求证:△BDE是等边三角形.
撓旅媸切∨艉托∶鞯慕馓馑悸罚?/P>
王老师的评价是:他们的思路都很好. ?/P>
![]()
现请你完成本题的证明,只要求写出一种证法,可参考他们的思路。
(本题12分)如图,点O是等边△ABC内一点,D是△ABC外的一点, ∠AOB= 110°,
∠BOC=
,△BOC ≌△ADC,∠OCD=60°,连接OD。
(1)求证:△OCD是等边三角形;
(2)当
=150°时,试判断△AOD 的形状,并说明理由;
(3)探究:当
为多少度时,△AOD是等腰三角形。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com