(3)当整点P从O点出发 秒时.可以到达整点的位置. 查看更多

 

题目列表(包括答案和解析)

如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发,以相同的速度沿BC向右运动,到达DC中点停止;已知P、Q同时出发,以PQ为边作正方形PQMN,使正方形PQMN和△ABC在BC的同侧,设运动的时间为t秒(t≥0).
(1)当点N落在AB边上时,t的值为   ,当点N落在AC边上时,t的值为   
(2)设正方形PQMN与△ABC重叠部分面积为S,求出当重叠部分为五边形时S与t的函数关系式以及t的取值范围;
(3)(本小题选做题,做对得5分,但全卷不超过150分)
如图2,分别取AB、AC的中点E、F,连接ED、FD,当点P、Q开始运动时,点G从BE中点出发,以每秒 个单位的速度沿折线BE-ED-DF向F点运动,到达F点停止运动.请问在点P的整个运动过程中,点G可能与PN边的中点重合吗?如果可能,请直接写出t的值或取值范围;若不可能,请说明理由.

查看答案和解析>>

如图1,在等腰△ABC中,底边BC=8,高AD=2,一动点Q从B点出发,以每秒1个单位的速度沿BC向右运动,到达D点停止;另一动点P从距离B点1个单位的位置出发,以相同的速度沿BC向右运动,到达DC中点停止;已知P、Q同时出发,以PQ为边作正方形PQMN,使正方形PQMN和△ABC在BC的同侧,设运动的时间为t秒(t≥0).
(1)当点N落在AB边上时,t的值为   ,当点N落在AC边上时,t的值为   
(2)设正方形PQMN与△ABC重叠部分面积为S,求出当重叠部分为五边形时S与t的函数关系式以及t的取值范围;
(3)(本小题选做题,做对得5分,但全卷不超过150分)
如图2,分别取AB、AC的中点E、F,连接ED、FD,当点P、Q开始运动时,点G从BE中点出发,以每秒 个单位的速度沿折线BE-ED-DF向F点运动,到达F点停止运动.请问在点P的整个运动过程中,点G可能与PN边的中点重合吗?如果可能,请直接写出t的值或取值范围;若不可能,请说明理由.

查看答案和解析>>

在平面直角坐标系中,横、纵坐标都为整数的点叫做整点,设坐标轴的单位为1cm,整点P从原点O出发,速度无1cm/s,且点P只能向上或向右运动,请回答下列问题:
(1)填表:
点P从O出发的时间可以到达的整点的坐标
1秒(0,1)、(1,0)
2秒(0,2)、(1,1)、(2,0)
3秒
(2)当点P从O点出发______秒时,可以到达整点(5,10);
(3)当点P从O点出发20秒时,整点P恰好在直线y=2x-4上,求点P的坐标.

查看答案和解析>>

在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.设坐标轴的单位长度为1厘米,整点P从原点O出发,速度为1厘米/秒,且整点P作向上或向右运动(如图所示).运动时间(秒)与整点(个)的关系如下表:
整点P从原点O出发的时间(秒)可以得到的整点P的坐标可以得到整点P的个数
1(0,1),(1,0)2
2(0,2),(1,1),(2,0)3
3(0,3),(1,2),(2,1),(3,0)4
根据上表中的规律,回答下列问题:
(1)当整点P从点O出发4秒时,可以得到的整点P的个数为______个;
(2)当整点P从点O出发8秒时,在直角坐标系中描出可以得到的所有整点,并顺次连接这些整点;
(3)当整点P从点O出发______秒时,可到达整点(16,4)的位置;
(4)当整点P(x,y)从点O出发30秒时,整点P(x,y)恰好在直线y=2x-6上,求整点P(x,y)的坐标.

查看答案和解析>>

在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.设坐标轴的单位长度为1厘米,整点P从原点O出发,速度为1厘米/秒,且整点P作向上或向右运动(如图所示).运动时间(秒)与整点(个)的关系如下表:
整点P从原点O出发的时间(秒)可以得到的整点P的坐标可以得到整点P的个数
1(0,1),(1,0)2
2(0,2),(1,1),(2,0)3
3(0,3),(1,2),(2,1),(3,0)4
根据上表中的规律,回答下列问题:
(1)当整点P从点O出发4秒时,可以得到的整点P的个数为______个;
(2)当整点P从点O出发8秒时,在直角坐标系中描出可以得到的所有整点,并顺次连接这些整点;
(3)当整点P从点O出发______秒时,可到达整点(16,4)的位置;
(4)当整点P(x,y)从点O出发30秒时,整点P(x,y)恰好在直线y=2x-6上,求整点P(x,y)的坐标.

查看答案和解析>>


同步练习册答案